Gebruik de discriminant om volgende vierkantsvergelijkingen op te lossen
- \(\frac{4}{25}x^2-\frac{4}{5}x+1=0\)
- \(10x^2-(16x-4)=x(x-29)\)
- \(\frac{4}{3}x^2+\frac{13}{9}x+\frac{1}{3}=0\)
- \(x(9x+23)=3(x-12)\)
- \(-\frac{23}{4}x=-\frac{1}{4}x^2-33\)
- \(18x^2+\frac{25}{4}x+\frac{1}{2}=0\)
- \((-5x+5)(2x+1)-x(-14x+38)=-95\)
- \(17x^2-(14x-4)=x(x-6)\)
- \((-5x+4)(-4x+5)-x(2x-10)=22\)
- \(3x^2-(20x-36)=2x(x-12)\)
- \(-(6-41x)=-18x^2-(14-16x)\)
- \(-(11-8x)=-12x^2-(8-3x)\)
Gebruik de discriminant om volgende vierkantsvergelijkingen op te lossen
Verbetersleutel
- \(\frac{4}{25}x^2-\frac{4}{5}x+1=0\\
\Leftrightarrow \color{red}{25.} \left(\frac{4}{25}x^2-\frac{4}{5}x+1\right)=0 \color{red}{.25} \\
\Leftrightarrow 4x^2-20x+25=0 \\\text{We zoeken de oplossingen van } \color{blue}{4x^2-20x+25=0} \\ \\\begin{align}
D & = b^2 - 4.a.c & & \\
& = (-20)^2-4.4.25 & &\\
& = 400-400 & & \\
& = 0 & & \\ x & = \frac{-b\pm \sqrt{D}}{2.a} & & \\
& = \frac{-(-20)}{2.4} & & \\
& = \frac{5}{2} & & \\V &= \Big\{ \frac{5}{2} \Big\} & &\end{align} \\ -----------------\)
- \(10x^2-(16x-4)=x(x-29) \\
\Leftrightarrow 10x^2-16x+4=x^2-29x \\
\Leftrightarrow 9x^2+13x+4=0 \\\text{We zoeken de oplossingen van } \color{blue}{9x^2+13x+4=0} \\ \\\begin{align}
D & = b^2 - 4.a.c & & \\
& = (13)^2-4.9.4 & &\\
& = 169-144 & & \\
& = 25 & & \\ \\
x_1 & = \frac{-b-\sqrt{D}}{2.a} & x_2 & = \frac{-b+\sqrt{D}}{2.a} \\
& = \frac{-13-\sqrt25}{2.9} & & = \frac{-13+\sqrt25}{2.9} \\
& = \frac{-18}{18} & & = \frac{-8}{18} \\
& = -1 & & = \frac{-4}{9} \\ \\ V &= \Big\{ -1 ; \frac{-4}{9} \Big\} & &\end{align} \\ -----------------\)
- \(\frac{4}{3}x^2+\frac{13}{9}x+\frac{1}{3}=0\\
\Leftrightarrow \color{red}{9.} \left(\frac{4}{3}x^2+\frac{13}{9}x+\frac{1}{3}\right)=0 \color{red}{.9} \\
\Leftrightarrow 12x^2+13x+3=0 \\\text{We zoeken de oplossingen van } \color{blue}{12x^2+13x+3=0} \\ \\\begin{align}
D & = b^2 - 4.a.c & & \\
& = (13)^2-4.12.3 & &\\
& = 169-144 & & \\
& = 25 & & \\ \\
x_1 & = \frac{-b-\sqrt{D}}{2.a} & x_2 & = \frac{-b+\sqrt{D}}{2.a} \\
& = \frac{-13-\sqrt25}{2.12} & & = \frac{-13+\sqrt25}{2.12} \\
& = \frac{-18}{24} & & = \frac{-8}{24} \\
& = \frac{-3}{4} & & = \frac{-1}{3} \\ \\ V &= \Big\{ \frac{-3}{4} ; \frac{-1}{3} \Big\} & &\end{align} \\ -----------------\)
- \(x(9x+23)=3(x-12) \\
\Leftrightarrow 9x^2+23x=3x-36 \\
\Leftrightarrow 9x^2+20x+36=0 \\\text{We zoeken de oplossingen van } \color{blue}{9x^2+20x+36=0} \\ \\\begin{align}
D & = b^2 - 4.a.c & & \\
& = (20)^2-4.9.36 & &\\
& = 400-1296 & & \\
& = -896 & & \\ & < 0 \\V &= \varnothing \end{align} \\ -----------------\)
- \(-\frac{23}{4}x=-\frac{1}{4}x^2-33 \\
\Leftrightarrow \frac{1}{4}x^2-\frac{23}{4}x+33=0 \\
\Leftrightarrow \color{red}{4.} \left(\frac{1}{4}x^2-\frac{23}{4}x+33\right)=0 \color{red}{.4} \\
\Leftrightarrow x^2-23x+132=0 \\\text{We zoeken de oplossingen van } \color{blue}{x^2-23x+132=0} \\ \\\begin{align}
D & = b^2 - 4.a.c & & \\
& = (-23)^2-4.1.132 & &\\
& = 529-528 & & \\
& = 1 & & \\ \\
x_1 & = \frac{-b-\sqrt{D}}{2.a} & x_2 & = \frac{-b+\sqrt{D}}{2.a} \\
& = \frac{-(-23)-\sqrt1}{2.1} & & = \frac{-(-23)+\sqrt1}{2.1} \\
& = \frac{22}{2} & & = \frac{24}{2} \\
& = 11 & & = 12 \\ \\ V &= \Big\{ 11 ; 12 \Big\} & &\end{align} \\ -----------------\)
- \(18x^2+\frac{25}{4}x+\frac{1}{2}=0\\
\Leftrightarrow \color{red}{4.} \left(18x^2+\frac{25}{4}x+\frac{1}{2}\right)=0 \color{red}{.4} \\
\Leftrightarrow 72x^2+25x+2=0 \\\text{We zoeken de oplossingen van } \color{blue}{72x^2+25x+2=0} \\ \\\begin{align}
D & = b^2 - 4.a.c & & \\
& = (25)^2-4.72.2 & &\\
& = 625-576 & & \\
& = 49 & & \\ \\
x_1 & = \frac{-b-\sqrt{D}}{2.a} & x_2 & = \frac{-b+\sqrt{D}}{2.a} \\
& = \frac{-25-\sqrt49}{2.72} & & = \frac{-25+\sqrt49}{2.72} \\
& = \frac{-32}{144} & & = \frac{-18}{144} \\
& = \frac{-2}{9} & & = \frac{-1}{8} \\ \\ V &= \Big\{ \frac{-2}{9} ; \frac{-1}{8} \Big\} & &\end{align} \\ -----------------\)
- \((-5x+5)(2x+1)-x(-14x+38)=-95\\
\Leftrightarrow -10x^2-5x+10x+5 +14x^2-38x+95=0 \\
\Leftrightarrow 4x^2-38x+100=0 \\\text{We zoeken de oplossingen van } \color{blue}{4x^2-38x+100=0} \\ \\\begin{align}
D & = b^2 - 4.a.c & & \\
& = (-38)^2-4.4.100 & &\\
& = 1444-1600 & & \\
& = -156 & & \\ & < 0 \\V &= \varnothing \end{align} \\ -----------------\)
- \(17x^2-(14x-4)=x(x-6) \\
\Leftrightarrow 17x^2-14x+4=x^2-6x \\
\Leftrightarrow 16x^2-8x+4=0 \\\text{We zoeken de oplossingen van } \color{blue}{16x^2-8x+4=0} \\ \\\begin{align}
D & = b^2 - 4.a.c & & \\
& = (-8)^2-4.16.4 & &\\
& = 64-256 & & \\
& = -192 & & \\ & < 0 \\V &= \varnothing \end{align} \\ -----------------\)
- \((-5x+4)(-4x+5)-x(2x-10)=22\\
\Leftrightarrow 20x^2-25x-16x+20 -2x^2+10x-22=0 \\
\Leftrightarrow 18x^2+5x-2=0 \\\text{We zoeken de oplossingen van } \color{blue}{18x^2+5x-2=0} \\ \\\begin{align}
D & = b^2 - 4.a.c & & \\
& = (5)^2-4.18.(-2) & &\\
& = 25+144 & & \\
& = 169 & & \\ \\
x_1 & = \frac{-b-\sqrt{D}}{2.a} & x_2 & = \frac{-b+\sqrt{D}}{2.a} \\
& = \frac{-5-\sqrt169}{2.18} & & = \frac{-5+\sqrt169}{2.18} \\
& = \frac{-18}{36} & & = \frac{8}{36} \\
& = \frac{-1}{2} & & = \frac{2}{9} \\ \\ V &= \Big\{ \frac{-1}{2} ; \frac{2}{9} \Big\} & &\end{align} \\ -----------------\)
- \(3x^2-(20x-36)=2x(x-12) \\
\Leftrightarrow 3x^2-20x+36=2x^2-24x \\
\Leftrightarrow x^2+4x+36=0 \\\text{We zoeken de oplossingen van } \color{blue}{x^2+4x+36=0} \\ \\\begin{align}
D & = b^2 - 4.a.c & & \\
& = (4)^2-4.1.36 & &\\
& = 16-144 & & \\
& = -128 & & \\ & < 0 \\V &= \varnothing \end{align} \\ -----------------\)
- \(-(6-41x)=-18x^2-(14-16x) \\
\Leftrightarrow -6+41x=-18x^2-14+16x \\
\Leftrightarrow 18x^2+25x+8=0 \\\text{We zoeken de oplossingen van } \color{blue}{18x^2+25x+8=0} \\ \\\begin{align}
D & = b^2 - 4.a.c & & \\
& = (25)^2-4.18.8 & &\\
& = 625-576 & & \\
& = 49 & & \\ \\
x_1 & = \frac{-b-\sqrt{D}}{2.a} & x_2 & = \frac{-b+\sqrt{D}}{2.a} \\
& = \frac{-25-\sqrt49}{2.18} & & = \frac{-25+\sqrt49}{2.18} \\
& = \frac{-32}{36} & & = \frac{-18}{36} \\
& = \frac{-8}{9} & & = \frac{-1}{2} \\ \\ V &= \Big\{ \frac{-8}{9} ; \frac{-1}{2} \Big\} & &\end{align} \\ -----------------\)
- \(-(11-8x)=-12x^2-(8-3x) \\
\Leftrightarrow -11+8x=-12x^2-8+3x \\
\Leftrightarrow 12x^2+5x-3=0 \\\text{We zoeken de oplossingen van } \color{blue}{12x^2+5x-3=0} \\ \\\begin{align}
D & = b^2 - 4.a.c & & \\
& = (5)^2-4.12.(-3) & &\\
& = 25+144 & & \\
& = 169 & & \\ \\
x_1 & = \frac{-b-\sqrt{D}}{2.a} & x_2 & = \frac{-b+\sqrt{D}}{2.a} \\
& = \frac{-5-\sqrt169}{2.12} & & = \frac{-5+\sqrt169}{2.12} \\
& = \frac{-18}{24} & & = \frac{8}{24} \\
& = \frac{-3}{4} & & = \frac{1}{3} \\ \\ V &= \Big\{ \frac{-3}{4} ; \frac{1}{3} \Big\} & &\end{align} \\ -----------------\)