Gebruik de discriminant om volgende vierkantsvergelijkingen op te lossen
- \(\frac{1}{9}x^2+\frac{2}{3}x+1=0\)
- \((3x-5)(5x+5)-x(14x-5)=41\)
- \(-4x=-\frac{1}{2}x^2+\frac{33}{2}\)
- \((2x-2)(-2x-2)-x(-13x+6)=3\)
- \(x(4x-77)=-49(x+1)\)
- \((4x+4)(-3x+4)-x(-13x+27)=100\)
- \(-\frac{2}{3}x=-\frac{1}{12}x^2+\frac{5}{3}\)
- \((x+2)(2x-1)-x(-14x-75)=-83\)
- \(\frac{1}{4}x^2-\frac{1}{2}x+\frac{1}{4}=0\)
- \((5x-1)(-4x+2)-x(-24x-17)=-38\)
- \(\frac{1}{4}x^2+\frac{7}{2}x+\frac{45}{4}=0\)
- \(\frac{9}{2}x^2+\frac{13}{2}x+2=0\)
Gebruik de discriminant om volgende vierkantsvergelijkingen op te lossen
Verbetersleutel
- \(\frac{1}{9}x^2+\frac{2}{3}x+1=0\\
\Leftrightarrow \color{red}{9.} \left(\frac{1}{9}x^2+\frac{2}{3}x+1\right)=0 \color{red}{.9} \\
\Leftrightarrow 4x^2+24x+36=0 \\\text{We zoeken de oplossingen van } \color{blue}{4x^2+24x+36=0} \\ \\\begin{align}
D & = b^2 - 4.a.c & & \\
& = (24)^2-4.4.36 & &\\
& = 576-576 & & \\
& = 0 & & \\ x & = \frac{-b\pm \sqrt{D}}{2.a} & & \\
& = \frac{-24}{2.4} & & \\
& = -3 & & \\V &= \Big\{ -3 \Big\} & &\end{align} \\ -----------------\)
- \((3x-5)(5x+5)-x(14x-5)=41\\
\Leftrightarrow 15x^2+15x-25x-25 -14x^2+5x-41=0 \\
\Leftrightarrow x^2-5x-66=0 \\\text{We zoeken de oplossingen van } \color{blue}{x^2-5x-66=0} \\ \\\begin{align}
D & = b^2 - 4.a.c & & \\
& = (-5)^2-4.1.(-66) & &\\
& = 25+264 & & \\
& = 289 & & \\ \\
x_1 & = \frac{-b-\sqrt{D}}{2.a} & x_2 & = \frac{-b+\sqrt{D}}{2.a} \\
& = \frac{-(-5)-\sqrt289}{2.1} & & = \frac{-(-5)+\sqrt289}{2.1} \\
& = \frac{-12}{2} & & = \frac{22}{2} \\
& = -6 & & = 11 \\ \\ V &= \Big\{ -6 ; 11 \Big\} & &\end{align} \\ -----------------\)
- \(-4x=-\frac{1}{2}x^2+\frac{33}{2} \\
\Leftrightarrow \frac{1}{2}x^2-4x-\frac{33}{2}=0 \\
\Leftrightarrow \color{red}{2.} \left(\frac{1}{2}x^2-4x-\frac{33}{2}\right)=0 \color{red}{.2} \\
\Leftrightarrow x^2-8x-33=0 \\\text{We zoeken de oplossingen van } \color{blue}{x^2-8x-33=0} \\ \\\begin{align}
D & = b^2 - 4.a.c & & \\
& = (-8)^2-4.1.(-33) & &\\
& = 64+132 & & \\
& = 196 & & \\ \\
x_1 & = \frac{-b-\sqrt{D}}{2.a} & x_2 & = \frac{-b+\sqrt{D}}{2.a} \\
& = \frac{-(-8)-\sqrt196}{2.1} & & = \frac{-(-8)+\sqrt196}{2.1} \\
& = \frac{-6}{2} & & = \frac{22}{2} \\
& = -3 & & = 11 \\ \\ V &= \Big\{ -3 ; 11 \Big\} & &\end{align} \\ -----------------\)
- \((2x-2)(-2x-2)-x(-13x+6)=3\\
\Leftrightarrow -4x^2-4x+4x+4 +13x^2-6x-3=0 \\
\Leftrightarrow 9x^2-6x+1=0 \\\text{We zoeken de oplossingen van } \color{blue}{9x^2-6x+1=0} \\ \\\begin{align}
D & = b^2 - 4.a.c & & \\
& = (-6)^2-4.9.1 & &\\
& = 36-36 & & \\
& = 0 & & \\ x & = \frac{-b\pm \sqrt{D}}{2.a} & & \\
& = \frac{-(-6)}{2.9} & & \\
& = \frac{1}{3} & & \\V &= \Big\{ \frac{1}{3} \Big\} & &\end{align} \\ -----------------\)
- \(x(4x-77)=-49(x+1) \\
\Leftrightarrow 4x^2-77x=-49x-49 \\
\Leftrightarrow 4x^2-28x+49=0 \\\text{We zoeken de oplossingen van } \color{blue}{4x^2-28x+49=0} \\ \\\begin{align}
D & = b^2 - 4.a.c & & \\
& = (-28)^2-4.4.49 & &\\
& = 784-784 & & \\
& = 0 & & \\ x & = \frac{-b\pm \sqrt{D}}{2.a} & & \\
& = \frac{-(-28)}{2.4} & & \\
& = \frac{7}{2} & & \\V &= \Big\{ \frac{7}{2} \Big\} & &\end{align} \\ -----------------\)
- \((4x+4)(-3x+4)-x(-13x+27)=100\\
\Leftrightarrow -12x^2+16x-12x+16 +13x^2-27x-100=0 \\
\Leftrightarrow x^2+5x-84=0 \\\text{We zoeken de oplossingen van } \color{blue}{x^2+5x-84=0} \\ \\\begin{align}
D & = b^2 - 4.a.c & & \\
& = (5)^2-4.1.(-84) & &\\
& = 25+336 & & \\
& = 361 & & \\ \\
x_1 & = \frac{-b-\sqrt{D}}{2.a} & x_2 & = \frac{-b+\sqrt{D}}{2.a} \\
& = \frac{-5-\sqrt361}{2.1} & & = \frac{-5+\sqrt361}{2.1} \\
& = \frac{-24}{2} & & = \frac{14}{2} \\
& = -12 & & = 7 \\ \\ V &= \Big\{ -12 ; 7 \Big\} & &\end{align} \\ -----------------\)
- \(-\frac{2}{3}x=-\frac{1}{12}x^2+\frac{5}{3} \\
\Leftrightarrow \frac{1}{12}x^2-\frac{2}{3}x-\frac{5}{3}=0 \\
\Leftrightarrow \color{red}{12.} \left(\frac{1}{12}x^2-\frac{2}{3}x-\frac{5}{3}\right)=0 \color{red}{.12} \\
\Leftrightarrow x^2-8x-20=0 \\\text{We zoeken de oplossingen van } \color{blue}{x^2-8x-20=0} \\ \\\begin{align}
D & = b^2 - 4.a.c & & \\
& = (-8)^2-4.1.(-20) & &\\
& = 64+80 & & \\
& = 144 & & \\ \\
x_1 & = \frac{-b-\sqrt{D}}{2.a} & x_2 & = \frac{-b+\sqrt{D}}{2.a} \\
& = \frac{-(-8)-\sqrt144}{2.1} & & = \frac{-(-8)+\sqrt144}{2.1} \\
& = \frac{-4}{2} & & = \frac{20}{2} \\
& = -2 & & = 10 \\ \\ V &= \Big\{ -2 ; 10 \Big\} & &\end{align} \\ -----------------\)
- \((x+2)(2x-1)-x(-14x-75)=-83\\
\Leftrightarrow 2x^2-x+4x-2 +14x^2+75x+83=0 \\
\Leftrightarrow 16x^2+72x+81=0 \\\text{We zoeken de oplossingen van } \color{blue}{16x^2+72x+81=0} \\ \\\begin{align}
D & = b^2 - 4.a.c & & \\
& = (72)^2-4.16.81 & &\\
& = 5184-5184 & & \\
& = 0 & & \\ x & = \frac{-b\pm \sqrt{D}}{2.a} & & \\
& = \frac{-72}{2.16} & & \\
& = -\frac{9}{4} & & \\V &= \Big\{ -\frac{9}{4} \Big\} & &\end{align} \\ -----------------\)
- \(\frac{1}{4}x^2-\frac{1}{2}x+\frac{1}{4}=0\\
\Leftrightarrow \color{red}{4.} \left(\frac{1}{4}x^2-\frac{1}{2}x+\frac{1}{4}\right)=0 \color{red}{.4} \\
\Leftrightarrow x^2-2x+1=0 \\\text{We zoeken de oplossingen van } \color{blue}{x^2-2x+1=0} \\ \\\begin{align}
D & = b^2 - 4.a.c & & \\
& = (-2)^2-4.1.1 & &\\
& = 4-4 & & \\
& = 0 & & \\ x & = \frac{-b\pm \sqrt{D}}{2.a} & & \\
& = \frac{-(-2)}{2.1} & & \\
& = 1 & & \\V &= \Big\{ 1 \Big\} & &\end{align} \\ -----------------\)
- \((5x-1)(-4x+2)-x(-24x-17)=-38\\
\Leftrightarrow -20x^2+10x+4x-2 +24x^2+17x+38=0 \\
\Leftrightarrow 4x^2+25x+36=0 \\\text{We zoeken de oplossingen van } \color{blue}{4x^2+25x+36=0} \\ \\\begin{align}
D & = b^2 - 4.a.c & & \\
& = (25)^2-4.4.36 & &\\
& = 625-576 & & \\
& = 49 & & \\ \\
x_1 & = \frac{-b-\sqrt{D}}{2.a} & x_2 & = \frac{-b+\sqrt{D}}{2.a} \\
& = \frac{-25-\sqrt49}{2.4} & & = \frac{-25+\sqrt49}{2.4} \\
& = \frac{-32}{8} & & = \frac{-18}{8} \\
& = -4 & & = \frac{-9}{4} \\ \\ V &= \Big\{ -4 ; \frac{-9}{4} \Big\} & &\end{align} \\ -----------------\)
- \(\frac{1}{4}x^2+\frac{7}{2}x+\frac{45}{4}=0\\
\Leftrightarrow \color{red}{4.} \left(\frac{1}{4}x^2+\frac{7}{2}x+\frac{45}{4}\right)=0 \color{red}{.4} \\
\Leftrightarrow x^2+14x+45=0 \\\text{We zoeken de oplossingen van } \color{blue}{x^2+14x+45=0} \\ \\\begin{align}
D & = b^2 - 4.a.c & & \\
& = (14)^2-4.1.45 & &\\
& = 196-180 & & \\
& = 16 & & \\ \\
x_1 & = \frac{-b-\sqrt{D}}{2.a} & x_2 & = \frac{-b+\sqrt{D}}{2.a} \\
& = \frac{-14-\sqrt16}{2.1} & & = \frac{-14+\sqrt16}{2.1} \\
& = \frac{-18}{2} & & = \frac{-10}{2} \\
& = -9 & & = -5 \\ \\ V &= \Big\{ -9 ; -5 \Big\} & &\end{align} \\ -----------------\)
- \(\frac{9}{2}x^2+\frac{13}{2}x+2=0\\
\Leftrightarrow \color{red}{2.} \left(\frac{9}{2}x^2+\frac{13}{2}x+2\right)=0 \color{red}{.2} \\
\Leftrightarrow 9x^2+13x+4=0 \\\text{We zoeken de oplossingen van } \color{blue}{9x^2+13x+4=0} \\ \\\begin{align}
D & = b^2 - 4.a.c & & \\
& = (13)^2-4.9.4 & &\\
& = 169-144 & & \\
& = 25 & & \\ \\
x_1 & = \frac{-b-\sqrt{D}}{2.a} & x_2 & = \frac{-b+\sqrt{D}}{2.a} \\
& = \frac{-13-\sqrt25}{2.9} & & = \frac{-13+\sqrt25}{2.9} \\
& = \frac{-18}{18} & & = \frac{-8}{18} \\
& = -1 & & = \frac{-4}{9} \\ \\ V &= \Big\{ -1 ; \frac{-4}{9} \Big\} & &\end{align} \\ -----------------\)