Gebruik de discriminant om volgende vierkantsvergelijkingen op te lossen
- \(23x^2-(17x-1)=7x(x-3)\)
- \(16x^2-(16x+4)=7x(x-3)\)
- \(\frac{7}{4}x=-\frac{1}{2}x^2+18\)
- \(-(3-33x)=-16x^2-(7-17x)\)
- \(\frac{1}{3}x^2+\frac{7}{9}x-\frac{16}{3}=0\)
- \((x+5)(4x+2)-x(3x+18)=26\)
- \(x(9x+77)=11(x-11)\)
- \(\frac{1}{2}x=-\frac{1}{8}x^2-\frac{1}{2}\)
- \(-(15-4x)=-x^2-(-17-8x)\)
- \(x^2+\frac{10}{3}x+\frac{64}{9}=0\)
- \(21x^2-(7x-121)=5x(x-19)\)
- \(3x=-\frac{1}{5}x^2-\frac{44}{5}\)
Gebruik de discriminant om volgende vierkantsvergelijkingen op te lossen
Verbetersleutel
- \(23x^2-(17x-1)=7x(x-3) \\
\Leftrightarrow 23x^2-17x+1=7x^2-21x \\
\Leftrightarrow 16x^2+4x+1=0 \\\text{We zoeken de oplossingen van } \color{blue}{16x^2+4x+1=0} \\ \\\begin{align}
D & = b^2 - 4.a.c & & \\
& = (4)^2-4.16.1 & &\\
& = 16-64 & & \\
& = -48 & & \\ & < 0 \\V &= \varnothing \end{align} \\ -----------------\)
- \(16x^2-(16x+4)=7x(x-3) \\
\Leftrightarrow 16x^2-16x-4=7x^2-21x \\
\Leftrightarrow 9x^2+5x-4=0 \\\text{We zoeken de oplossingen van } \color{blue}{9x^2+5x-4=0} \\ \\\begin{align}
D & = b^2 - 4.a.c & & \\
& = (5)^2-4.9.(-4) & &\\
& = 25+144 & & \\
& = 169 & & \\ \\
x_1 & = \frac{-b-\sqrt{D}}{2.a} & x_2 & = \frac{-b+\sqrt{D}}{2.a} \\
& = \frac{-5-\sqrt169}{2.9} & & = \frac{-5+\sqrt169}{2.9} \\
& = \frac{-18}{18} & & = \frac{8}{18} \\
& = -1 & & = \frac{4}{9} \\ \\ V &= \Big\{ -1 ; \frac{4}{9} \Big\} & &\end{align} \\ -----------------\)
- \(\frac{7}{4}x=-\frac{1}{2}x^2+18 \\
\Leftrightarrow \frac{1}{2}x^2+\frac{7}{4}x-18=0 \\
\Leftrightarrow \color{red}{4.} \left(\frac{1}{2}x^2+\frac{7}{4}x-18\right)=0 \color{red}{.4} \\
\Leftrightarrow 2x^2+7x-72=0 \\\text{We zoeken de oplossingen van } \color{blue}{2x^2+7x-72=0} \\ \\\begin{align}
D & = b^2 - 4.a.c & & \\
& = (7)^2-4.2.(-72) & &\\
& = 49+576 & & \\
& = 625 & & \\ \\
x_1 & = \frac{-b-\sqrt{D}}{2.a} & x_2 & = \frac{-b+\sqrt{D}}{2.a} \\
& = \frac{-7-\sqrt625}{2.2} & & = \frac{-7+\sqrt625}{2.2} \\
& = \frac{-32}{4} & & = \frac{18}{4} \\
& = -8 & & = \frac{9}{2} \\ \\ V &= \Big\{ -8 ; \frac{9}{2} \Big\} & &\end{align} \\ -----------------\)
- \(-(3-33x)=-16x^2-(7-17x) \\
\Leftrightarrow -3+33x=-16x^2-7+17x \\
\Leftrightarrow 16x^2+16x+4=0 \\\text{We zoeken de oplossingen van } \color{blue}{16x^2+16x+4=0} \\ \\\begin{align}
D & = b^2 - 4.a.c & & \\
& = (16)^2-4.16.4 & &\\
& = 256-256 & & \\
& = 0 & & \\ x & = \frac{-b\pm \sqrt{D}}{2.a} & & \\
& = \frac{-16}{2.16} & & \\
& = -\frac{1}{2} & & \\V &= \Big\{ -\frac{1}{2} \Big\} & &\end{align} \\ -----------------\)
- \(\frac{1}{3}x^2+\frac{7}{9}x-\frac{16}{3}=0\\
\Leftrightarrow \color{red}{9.} \left(\frac{1}{3}x^2+\frac{7}{9}x-\frac{16}{3}\right)=0 \color{red}{.9} \\
\Leftrightarrow 3x^2+7x-48=0 \\\text{We zoeken de oplossingen van } \color{blue}{3x^2+7x-48=0} \\ \\\begin{align}
D & = b^2 - 4.a.c & & \\
& = (7)^2-4.3.(-48) & &\\
& = 49+576 & & \\
& = 625 & & \\ \\
x_1 & = \frac{-b-\sqrt{D}}{2.a} & x_2 & = \frac{-b+\sqrt{D}}{2.a} \\
& = \frac{-7-\sqrt625}{2.3} & & = \frac{-7+\sqrt625}{2.3} \\
& = \frac{-32}{6} & & = \frac{18}{6} \\
& = \frac{-16}{3} & & = 3 \\ \\ V &= \Big\{ \frac{-16}{3} ; 3 \Big\} & &\end{align} \\ -----------------\)
- \((x+5)(4x+2)-x(3x+18)=26\\
\Leftrightarrow 4x^2+2x+20x+10 -3x^2-18x-26=0 \\
\Leftrightarrow x^2-6x-16=0 \\\text{We zoeken de oplossingen van } \color{blue}{x^2-6x-16=0} \\ \\\begin{align}
D & = b^2 - 4.a.c & & \\
& = (-6)^2-4.1.(-16) & &\\
& = 36+64 & & \\
& = 100 & & \\ \\
x_1 & = \frac{-b-\sqrt{D}}{2.a} & x_2 & = \frac{-b+\sqrt{D}}{2.a} \\
& = \frac{-(-6)-\sqrt100}{2.1} & & = \frac{-(-6)+\sqrt100}{2.1} \\
& = \frac{-4}{2} & & = \frac{16}{2} \\
& = -2 & & = 8 \\ \\ V &= \Big\{ -2 ; 8 \Big\} & &\end{align} \\ -----------------\)
- \(x(9x+77)=11(x-11) \\
\Leftrightarrow 9x^2+77x=11x-121 \\
\Leftrightarrow 9x^2+66x+121=0 \\\text{We zoeken de oplossingen van } \color{blue}{9x^2+66x+121=0} \\ \\\begin{align}
D & = b^2 - 4.a.c & & \\
& = (66)^2-4.9.121 & &\\
& = 4356-4356 & & \\
& = 0 & & \\ x & = \frac{-b\pm \sqrt{D}}{2.a} & & \\
& = \frac{-66}{2.9} & & \\
& = -\frac{11}{3} & & \\V &= \Big\{ -\frac{11}{3} \Big\} & &\end{align} \\ -----------------\)
- \(\frac{1}{2}x=-\frac{1}{8}x^2-\frac{1}{2} \\
\Leftrightarrow \frac{1}{8}x^2+\frac{1}{2}x+\frac{1}{2}=0 \\
\Leftrightarrow \color{red}{8.} \left(\frac{1}{8}x^2+\frac{1}{2}x+\frac{1}{2}\right)=0 \color{red}{.8} \\
\Leftrightarrow x^2+4x+4=0 \\\text{We zoeken de oplossingen van } \color{blue}{x^2+4x+4=0} \\ \\\begin{align}
D & = b^2 - 4.a.c & & \\
& = (4)^2-4.1.4 & &\\
& = 16-16 & & \\
& = 0 & & \\ x & = \frac{-b\pm \sqrt{D}}{2.a} & & \\
& = \frac{-4}{2.1} & & \\
& = -2 & & \\V &= \Big\{ -2 \Big\} & &\end{align} \\ -----------------\)
- \(-(15-4x)=-x^2-(-17-8x) \\
\Leftrightarrow -15+4x=-x^2+17+8x \\
\Leftrightarrow x^2-4x-32=0 \\\text{We zoeken de oplossingen van } \color{blue}{x^2-4x-32=0} \\ \\\begin{align}
D & = b^2 - 4.a.c & & \\
& = (-4)^2-4.1.(-32) & &\\
& = 16+128 & & \\
& = 144 & & \\ \\
x_1 & = \frac{-b-\sqrt{D}}{2.a} & x_2 & = \frac{-b+\sqrt{D}}{2.a} \\
& = \frac{-(-4)-\sqrt144}{2.1} & & = \frac{-(-4)+\sqrt144}{2.1} \\
& = \frac{-8}{2} & & = \frac{16}{2} \\
& = -4 & & = 8 \\ \\ V &= \Big\{ -4 ; 8 \Big\} & &\end{align} \\ -----------------\)
- \(x^2+\frac{10}{3}x+\frac{64}{9}=0\\
\Leftrightarrow \color{red}{9.} \left(x^2+\frac{10}{3}x+\frac{64}{9}\right)=0 \color{red}{.9} \\
\Leftrightarrow 9x^2+30x+64=0 \\\text{We zoeken de oplossingen van } \color{blue}{9x^2+30x+64=0} \\ \\\begin{align}
D & = b^2 - 4.a.c & & \\
& = (30)^2-4.9.64 & &\\
& = 900-2304 & & \\
& = -1404 & & \\ & < 0 \\V &= \varnothing \end{align} \\ -----------------\)
- \(21x^2-(7x-121)=5x(x-19) \\
\Leftrightarrow 21x^2-7x+121=5x^2-95x \\
\Leftrightarrow 16x^2+88x+121=0 \\\text{We zoeken de oplossingen van } \color{blue}{16x^2+88x+121=0} \\ \\\begin{align}
D & = b^2 - 4.a.c & & \\
& = (88)^2-4.16.121 & &\\
& = 7744-7744 & & \\
& = 0 & & \\ x & = \frac{-b\pm \sqrt{D}}{2.a} & & \\
& = \frac{-88}{2.16} & & \\
& = -\frac{11}{4} & & \\V &= \Big\{ -\frac{11}{4} \Big\} & &\end{align} \\ -----------------\)
- \(3x=-\frac{1}{5}x^2-\frac{44}{5} \\
\Leftrightarrow \frac{1}{5}x^2+3x+\frac{44}{5}=0 \\
\Leftrightarrow \color{red}{5.} \left(\frac{1}{5}x^2+3x+\frac{44}{5}\right)=0 \color{red}{.5} \\
\Leftrightarrow x^2+15x+44=0 \\\text{We zoeken de oplossingen van } \color{blue}{x^2+15x+44=0} \\ \\\begin{align}
D & = b^2 - 4.a.c & & \\
& = (15)^2-4.1.44 & &\\
& = 225-176 & & \\
& = 49 & & \\ \\
x_1 & = \frac{-b-\sqrt{D}}{2.a} & x_2 & = \frac{-b+\sqrt{D}}{2.a} \\
& = \frac{-15-\sqrt49}{2.1} & & = \frac{-15+\sqrt49}{2.1} \\
& = \frac{-22}{2} & & = \frac{-8}{2} \\
& = -11 & & = -4 \\ \\ V &= \Big\{ -11 ; -4 \Big\} & &\end{align} \\ -----------------\)