Gebruik de discriminant om volgende vierkantsvergelijkingen op te lossen
- \(12x^2+30x+9=5x-3\)
- \(16x^2-37x+27=11x-9\)
- \(72x^2+3x+5=-4x+7\)
- \(16x^2+6x-1=0\)
- \(16x^2+10x+1=0\)
- \(x^2-10x+113=12x-8\)
- \(x^2+8x-10=6x-7\)
- \(x^2-14x-3=-9x-9\)
- \(2x^2+15x-8=0\)
- \(4x^2-44x+121=0\)
- \(3x^2+5x-12=0\)
- \(x^2+4x+15=-x+9\)
Gebruik de discriminant om volgende vierkantsvergelijkingen op te lossen
Verbetersleutel
- \(12x^2+30x+9=5x-3\\
\Leftrightarrow 12x^2+25x+12=0 \\\text{We zoeken de oplossingen van } \color{blue}{12x^2+25x+12=0} \\ \\\begin{align}
D & = b^2 - 4.a.c & & \\
& = (25)^2-4.12.12 & &\\
& = 625-576 & & \\
& = 49 & & \\ \\
x_1 & = \frac{-b-\sqrt{D}}{2.a} & x_2 & = \frac{-b+\sqrt{D}}{2.a} \\
& = \frac{-25-\sqrt49}{2.12} & & = \frac{-25+\sqrt49}{2.12} \\
& = \frac{-32}{24} & & = \frac{-18}{24} \\
& = \frac{-4}{3} & & = \frac{-3}{4} \\ \\ V &= \Big\{ \frac{-4}{3} ; \frac{-3}{4} \Big\} & &\end{align} \\ -----------------\)
- \(16x^2-37x+27=11x-9\\
\Leftrightarrow 16x^2-48x+36=0 \\\text{We zoeken de oplossingen van } \color{blue}{16x^2-48x+36=0} \\ \\\begin{align}
D & = b^2 - 4.a.c & & \\
& = (-48)^2-4.16.36 & &\\
& = 2304-2304 & & \\
& = 0 & & \\ x & = \frac{-b\pm \sqrt{D}}{2.a} & & \\
& = \frac{-(-48)}{2.16} & & \\
& = \frac{3}{2} & & \\V &= \Big\{ \frac{3}{2} \Big\} & &\end{align} \\ -----------------\)
- \(72x^2+3x+5=-4x+7\\
\Leftrightarrow 72x^2+7x-2=0 \\\text{We zoeken de oplossingen van } \color{blue}{72x^2+7x-2=0} \\ \\\begin{align}
D & = b^2 - 4.a.c & & \\
& = (7)^2-4.72.(-2) & &\\
& = 49+576 & & \\
& = 625 & & \\ \\
x_1 & = \frac{-b-\sqrt{D}}{2.a} & x_2 & = \frac{-b+\sqrt{D}}{2.a} \\
& = \frac{-7-\sqrt625}{2.72} & & = \frac{-7+\sqrt625}{2.72} \\
& = \frac{-32}{144} & & = \frac{18}{144} \\
& = \frac{-2}{9} & & = \frac{1}{8} \\ \\ V &= \Big\{ \frac{-2}{9} ; \frac{1}{8} \Big\} & &\end{align} \\ -----------------\)
- \(\text{We zoeken de oplossingen van } \color{blue}{16x^2+6x-1=0} \\ \\\begin{align}
D & = b^2 - 4.a.c & & \\
& = (6)^2-4.16.(-1) & &\\
& = 36+64 & & \\
& = 100 & & \\ \\
x_1 & = \frac{-b-\sqrt{D}}{2.a} & x_2 & = \frac{-b+\sqrt{D}}{2.a} \\
& = \frac{-6-\sqrt100}{2.16} & & = \frac{-6+\sqrt100}{2.16} \\
& = \frac{-16}{32} & & = \frac{4}{32} \\
& = \frac{-1}{2} & & = \frac{1}{8} \\ \\ V &= \Big\{ \frac{-1}{2} ; \frac{1}{8} \Big\} & &\end{align} \\ -----------------\)
- \(\text{We zoeken de oplossingen van } \color{blue}{16x^2+10x+1=0} \\ \\\begin{align}
D & = b^2 - 4.a.c & & \\
& = (10)^2-4.16.1 & &\\
& = 100-64 & & \\
& = 36 & & \\ \\
x_1 & = \frac{-b-\sqrt{D}}{2.a} & x_2 & = \frac{-b+\sqrt{D}}{2.a} \\
& = \frac{-10-\sqrt36}{2.16} & & = \frac{-10+\sqrt36}{2.16} \\
& = \frac{-16}{32} & & = \frac{-4}{32} \\
& = \frac{-1}{2} & & = \frac{-1}{8} \\ \\ V &= \Big\{ \frac{-1}{2} ; \frac{-1}{8} \Big\} & &\end{align} \\ -----------------\)
- \(x^2-10x+113=12x-8\\
\Leftrightarrow x^2-22x+121=0 \\\text{We zoeken de oplossingen van } \color{blue}{x^2-22x+121=0} \\ \\\begin{align}
D & = b^2 - 4.a.c & & \\
& = (-22)^2-4.1.121 & &\\
& = 484-484 & & \\
& = 0 & & \\ x & = \frac{-b\pm \sqrt{D}}{2.a} & & \\
& = \frac{-(-22)}{2.1} & & \\
& = 11 & & \\V &= \Big\{ 11 \Big\} & &\end{align} \\ -----------------\)
- \(x^2+8x-10=6x-7\\
\Leftrightarrow x^2+2x-3=0 \\\text{We zoeken de oplossingen van } \color{blue}{x^2+2x-3=0} \\ \\\begin{align}
D & = b^2 - 4.a.c & & \\
& = (2)^2-4.1.(-3) & &\\
& = 4+12 & & \\
& = 16 & & \\ \\
x_1 & = \frac{-b-\sqrt{D}}{2.a} & x_2 & = \frac{-b+\sqrt{D}}{2.a} \\
& = \frac{-2-\sqrt16}{2.1} & & = \frac{-2+\sqrt16}{2.1} \\
& = \frac{-6}{2} & & = \frac{2}{2} \\
& = -3 & & = 1 \\ \\ V &= \Big\{ -3 ; 1 \Big\} & &\end{align} \\ -----------------\)
- \(x^2-14x-3=-9x-9\\
\Leftrightarrow x^2-5x+6=0 \\\text{We zoeken de oplossingen van } \color{blue}{x^2-5x+6=0} \\ \\\begin{align}
D & = b^2 - 4.a.c & & \\
& = (-5)^2-4.1.6 & &\\
& = 25-24 & & \\
& = 1 & & \\ \\
x_1 & = \frac{-b-\sqrt{D}}{2.a} & x_2 & = \frac{-b+\sqrt{D}}{2.a} \\
& = \frac{-(-5)-\sqrt1}{2.1} & & = \frac{-(-5)+\sqrt1}{2.1} \\
& = \frac{4}{2} & & = \frac{6}{2} \\
& = 2 & & = 3 \\ \\ V &= \Big\{ 2 ; 3 \Big\} & &\end{align} \\ -----------------\)
- \(\text{We zoeken de oplossingen van } \color{blue}{2x^2+15x-8=0} \\ \\\begin{align}
D & = b^2 - 4.a.c & & \\
& = (15)^2-4.2.(-8) & &\\
& = 225+64 & & \\
& = 289 & & \\ \\
x_1 & = \frac{-b-\sqrt{D}}{2.a} & x_2 & = \frac{-b+\sqrt{D}}{2.a} \\
& = \frac{-15-\sqrt289}{2.2} & & = \frac{-15+\sqrt289}{2.2} \\
& = \frac{-32}{4} & & = \frac{2}{4} \\
& = -8 & & = \frac{1}{2} \\ \\ V &= \Big\{ -8 ; \frac{1}{2} \Big\} & &\end{align} \\ -----------------\)
- \(\text{We zoeken de oplossingen van } \color{blue}{4x^2-44x+121=0} \\ \\\begin{align}
D & = b^2 - 4.a.c & & \\
& = (-44)^2-4.4.121 & &\\
& = 1936-1936 & & \\
& = 0 & & \\ x & = \frac{-b\pm \sqrt{D}}{2.a} & & \\
& = \frac{-(-44)}{2.4} & & \\
& = \frac{11}{2} & & \\V &= \Big\{ \frac{11}{2} \Big\} & &\end{align} \\ -----------------\)
- \(\text{We zoeken de oplossingen van } \color{blue}{3x^2+5x-12=0} \\ \\\begin{align}
D & = b^2 - 4.a.c & & \\
& = (5)^2-4.3.(-12) & &\\
& = 25+144 & & \\
& = 169 & & \\ \\
x_1 & = \frac{-b-\sqrt{D}}{2.a} & x_2 & = \frac{-b+\sqrt{D}}{2.a} \\
& = \frac{-5-\sqrt169}{2.3} & & = \frac{-5+\sqrt169}{2.3} \\
& = \frac{-18}{6} & & = \frac{8}{6} \\
& = -3 & & = \frac{4}{3} \\ \\ V &= \Big\{ -3 ; \frac{4}{3} \Big\} & &\end{align} \\ -----------------\)
- \(x^2+4x+15=-x+9\\
\Leftrightarrow x^2+5x+6=0 \\\text{We zoeken de oplossingen van } \color{blue}{x^2+5x+6=0} \\ \\\begin{align}
D & = b^2 - 4.a.c & & \\
& = (5)^2-4.1.6 & &\\
& = 25-24 & & \\
& = 1 & & \\ \\
x_1 & = \frac{-b-\sqrt{D}}{2.a} & x_2 & = \frac{-b+\sqrt{D}}{2.a} \\
& = \frac{-5-\sqrt1}{2.1} & & = \frac{-5+\sqrt1}{2.1} \\
& = \frac{-6}{2} & & = \frac{-4}{2} \\
& = -3 & & = -2 \\ \\ V &= \Big\{ -3 ; -2 \Big\} & &\end{align} \\ -----------------\)