Vierkantsvergelijkingen (VKV)

Hoofdmenu Eentje per keer 

Gebruik de discriminant om volgende vierkantsvergelijkingen op te lossen

  1. \(x^2-12x+32=0\)
  2. \(9x^2-65x+93=-11x+12\)
  3. \(x^2+20x+21=11x+7\)
  4. \(72x^2+37x+8=12x+6\)
  5. \(4x^2-11x+21=5x+5\)
  6. \(x^2-x-132=0\)
  7. \(4x^2+25x+36=0\)
  8. \(48x^2+7x-3=0\)
  9. \(16x^2+10x+1=0\)
  10. \(16x^2+4x+25=0\)
  11. \(3x^2+7x-48=0\)
  12. \(x^2-23x+148=x+4\)

Gebruik de discriminant om volgende vierkantsvergelijkingen op te lossen

Verbetersleutel

  1. \(\text{We zoeken de oplossingen van } \color{blue}{x^2-12x+32=0} \\ \\\begin{align} D & = b^2 - 4.a.c & & \\ & = (-12)^2-4.1.32 & &\\ & = 144-128 & & \\ & = 16 & & \\ \\ x_1 & = \frac{-b-\sqrt{D}}{2.a} & x_2 & = \frac{-b+\sqrt{D}}{2.a} \\ & = \frac{-(-12)-\sqrt16}{2.1} & & = \frac{-(-12)+\sqrt16}{2.1} \\ & = \frac{8}{2} & & = \frac{16}{2} \\ & = 4 & & = 8 \\ \\ V &= \Big\{ 4 ; 8 \Big\} & &\end{align} \\ -----------------\)
  2. \(9x^2-65x+93=-11x+12\\ \Leftrightarrow 9x^2-54x+81=0 \\\text{We zoeken de oplossingen van } \color{blue}{9x^2-54x+81=0} \\ \\\begin{align} D & = b^2 - 4.a.c & & \\ & = (-54)^2-4.9.81 & &\\ & = 2916-2916 & & \\ & = 0 & & \\ x & = \frac{-b\pm \sqrt{D}}{2.a} & & \\ & = \frac{-(-54)}{2.9} & & \\ & = 3 & & \\V &= \Big\{ 3 \Big\} & &\end{align} \\ -----------------\)
  3. \(x^2+20x+21=11x+7\\ \Leftrightarrow x^2+9x+14=0 \\\text{We zoeken de oplossingen van } \color{blue}{x^2+9x+14=0} \\ \\\begin{align} D & = b^2 - 4.a.c & & \\ & = (9)^2-4.1.14 & &\\ & = 81-56 & & \\ & = 25 & & \\ \\ x_1 & = \frac{-b-\sqrt{D}}{2.a} & x_2 & = \frac{-b+\sqrt{D}}{2.a} \\ & = \frac{-9-\sqrt25}{2.1} & & = \frac{-9+\sqrt25}{2.1} \\ & = \frac{-14}{2} & & = \frac{-4}{2} \\ & = -7 & & = -2 \\ \\ V &= \Big\{ -7 ; -2 \Big\} & &\end{align} \\ -----------------\)
  4. \(72x^2+37x+8=12x+6\\ \Leftrightarrow 72x^2+25x+2=0 \\\text{We zoeken de oplossingen van } \color{blue}{72x^2+25x+2=0} \\ \\\begin{align} D & = b^2 - 4.a.c & & \\ & = (25)^2-4.72.2 & &\\ & = 625-576 & & \\ & = 49 & & \\ \\ x_1 & = \frac{-b-\sqrt{D}}{2.a} & x_2 & = \frac{-b+\sqrt{D}}{2.a} \\ & = \frac{-25-\sqrt49}{2.72} & & = \frac{-25+\sqrt49}{2.72} \\ & = \frac{-32}{144} & & = \frac{-18}{144} \\ & = \frac{-2}{9} & & = \frac{-1}{8} \\ \\ V &= \Big\{ \frac{-2}{9} ; \frac{-1}{8} \Big\} & &\end{align} \\ -----------------\)
  5. \(4x^2-11x+21=5x+5\\ \Leftrightarrow 4x^2-16x+16=0 \\\text{We zoeken de oplossingen van } \color{blue}{4x^2-16x+16=0} \\ \\\begin{align} D & = b^2 - 4.a.c & & \\ & = (-16)^2-4.4.16 & &\\ & = 256-256 & & \\ & = 0 & & \\ x & = \frac{-b\pm \sqrt{D}}{2.a} & & \\ & = \frac{-(-16)}{2.4} & & \\ & = 2 & & \\V &= \Big\{ 2 \Big\} & &\end{align} \\ -----------------\)
  6. \(\text{We zoeken de oplossingen van } \color{blue}{x^2-x-132=0} \\ \\\begin{align} D & = b^2 - 4.a.c & & \\ & = (-1)^2-4.1.(-132) & &\\ & = 1+528 & & \\ & = 529 & & \\ \\ x_1 & = \frac{-b-\sqrt{D}}{2.a} & x_2 & = \frac{-b+\sqrt{D}}{2.a} \\ & = \frac{-(-1)-\sqrt529}{2.1} & & = \frac{-(-1)+\sqrt529}{2.1} \\ & = \frac{-22}{2} & & = \frac{24}{2} \\ & = -11 & & = 12 \\ \\ V &= \Big\{ -11 ; 12 \Big\} & &\end{align} \\ -----------------\)
  7. \(\text{We zoeken de oplossingen van } \color{blue}{4x^2+25x+36=0} \\ \\\begin{align} D & = b^2 - 4.a.c & & \\ & = (25)^2-4.4.36 & &\\ & = 625-576 & & \\ & = 49 & & \\ \\ x_1 & = \frac{-b-\sqrt{D}}{2.a} & x_2 & = \frac{-b+\sqrt{D}}{2.a} \\ & = \frac{-25-\sqrt49}{2.4} & & = \frac{-25+\sqrt49}{2.4} \\ & = \frac{-32}{8} & & = \frac{-18}{8} \\ & = -4 & & = \frac{-9}{4} \\ \\ V &= \Big\{ -4 ; \frac{-9}{4} \Big\} & &\end{align} \\ -----------------\)
  8. \(\text{We zoeken de oplossingen van } \color{blue}{48x^2+7x-3=0} \\ \\\begin{align} D & = b^2 - 4.a.c & & \\ & = (7)^2-4.48.(-3) & &\\ & = 49+576 & & \\ & = 625 & & \\ \\ x_1 & = \frac{-b-\sqrt{D}}{2.a} & x_2 & = \frac{-b+\sqrt{D}}{2.a} \\ & = \frac{-7-\sqrt625}{2.48} & & = \frac{-7+\sqrt625}{2.48} \\ & = \frac{-32}{96} & & = \frac{18}{96} \\ & = \frac{-1}{3} & & = \frac{3}{16} \\ \\ V &= \Big\{ \frac{-1}{3} ; \frac{3}{16} \Big\} & &\end{align} \\ -----------------\)
  9. \(\text{We zoeken de oplossingen van } \color{blue}{16x^2+10x+1=0} \\ \\\begin{align} D & = b^2 - 4.a.c & & \\ & = (10)^2-4.16.1 & &\\ & = 100-64 & & \\ & = 36 & & \\ \\ x_1 & = \frac{-b-\sqrt{D}}{2.a} & x_2 & = \frac{-b+\sqrt{D}}{2.a} \\ & = \frac{-10-\sqrt36}{2.16} & & = \frac{-10+\sqrt36}{2.16} \\ & = \frac{-16}{32} & & = \frac{-4}{32} \\ & = \frac{-1}{2} & & = \frac{-1}{8} \\ \\ V &= \Big\{ \frac{-1}{2} ; \frac{-1}{8} \Big\} & &\end{align} \\ -----------------\)
  10. \(\text{We zoeken de oplossingen van } \color{blue}{16x^2+4x+25=0} \\ \\\begin{align} D & = b^2 - 4.a.c & & \\ & = (4)^2-4.16.25 & &\\ & = 16-1600 & & \\ & = -1584 & & \\ & < 0 \\V &= \varnothing \end{align} \\ -----------------\)
  11. \(\text{We zoeken de oplossingen van } \color{blue}{3x^2+7x-48=0} \\ \\\begin{align} D & = b^2 - 4.a.c & & \\ & = (7)^2-4.3.(-48) & &\\ & = 49+576 & & \\ & = 625 & & \\ \\ x_1 & = \frac{-b-\sqrt{D}}{2.a} & x_2 & = \frac{-b+\sqrt{D}}{2.a} \\ & = \frac{-7-\sqrt625}{2.3} & & = \frac{-7+\sqrt625}{2.3} \\ & = \frac{-32}{6} & & = \frac{18}{6} \\ & = \frac{-16}{3} & & = 3 \\ \\ V &= \Big\{ \frac{-16}{3} ; 3 \Big\} & &\end{align} \\ -----------------\)
  12. \(x^2-23x+148=x+4\\ \Leftrightarrow x^2-24x+144=0 \\\text{We zoeken de oplossingen van } \color{blue}{x^2-24x+144=0} \\ \\\begin{align} D & = b^2 - 4.a.c & & \\ & = (-24)^2-4.1.144 & &\\ & = 576-576 & & \\ & = 0 & & \\ x & = \frac{-b\pm \sqrt{D}}{2.a} & & \\ & = \frac{-(-24)}{2.1} & & \\ & = 12 & & \\V &= \Big\{ 12 \Big\} & &\end{align} \\ -----------------\)
Oefeningengenerator vanhoeckes.be/wiskunde 2025-05-09 14:40:59