Gebruik de discriminant om volgende vierkantsvergelijkingen op te lossen
- \(x^2-12x+32=0\)
- \(9x^2-65x+93=-11x+12\)
- \(x^2+20x+21=11x+7\)
- \(72x^2+37x+8=12x+6\)
- \(4x^2-11x+21=5x+5\)
- \(x^2-x-132=0\)
- \(4x^2+25x+36=0\)
- \(48x^2+7x-3=0\)
- \(16x^2+10x+1=0\)
- \(16x^2+4x+25=0\)
- \(3x^2+7x-48=0\)
- \(x^2-23x+148=x+4\)
Gebruik de discriminant om volgende vierkantsvergelijkingen op te lossen
Verbetersleutel
- \(\text{We zoeken de oplossingen van } \color{blue}{x^2-12x+32=0} \\ \\\begin{align}
D & = b^2 - 4.a.c & & \\
& = (-12)^2-4.1.32 & &\\
& = 144-128 & & \\
& = 16 & & \\ \\
x_1 & = \frac{-b-\sqrt{D}}{2.a} & x_2 & = \frac{-b+\sqrt{D}}{2.a} \\
& = \frac{-(-12)-\sqrt16}{2.1} & & = \frac{-(-12)+\sqrt16}{2.1} \\
& = \frac{8}{2} & & = \frac{16}{2} \\
& = 4 & & = 8 \\ \\ V &= \Big\{ 4 ; 8 \Big\} & &\end{align} \\ -----------------\)
- \(9x^2-65x+93=-11x+12\\
\Leftrightarrow 9x^2-54x+81=0 \\\text{We zoeken de oplossingen van } \color{blue}{9x^2-54x+81=0} \\ \\\begin{align}
D & = b^2 - 4.a.c & & \\
& = (-54)^2-4.9.81 & &\\
& = 2916-2916 & & \\
& = 0 & & \\ x & = \frac{-b\pm \sqrt{D}}{2.a} & & \\
& = \frac{-(-54)}{2.9} & & \\
& = 3 & & \\V &= \Big\{ 3 \Big\} & &\end{align} \\ -----------------\)
- \(x^2+20x+21=11x+7\\
\Leftrightarrow x^2+9x+14=0 \\\text{We zoeken de oplossingen van } \color{blue}{x^2+9x+14=0} \\ \\\begin{align}
D & = b^2 - 4.a.c & & \\
& = (9)^2-4.1.14 & &\\
& = 81-56 & & \\
& = 25 & & \\ \\
x_1 & = \frac{-b-\sqrt{D}}{2.a} & x_2 & = \frac{-b+\sqrt{D}}{2.a} \\
& = \frac{-9-\sqrt25}{2.1} & & = \frac{-9+\sqrt25}{2.1} \\
& = \frac{-14}{2} & & = \frac{-4}{2} \\
& = -7 & & = -2 \\ \\ V &= \Big\{ -7 ; -2 \Big\} & &\end{align} \\ -----------------\)
- \(72x^2+37x+8=12x+6\\
\Leftrightarrow 72x^2+25x+2=0 \\\text{We zoeken de oplossingen van } \color{blue}{72x^2+25x+2=0} \\ \\\begin{align}
D & = b^2 - 4.a.c & & \\
& = (25)^2-4.72.2 & &\\
& = 625-576 & & \\
& = 49 & & \\ \\
x_1 & = \frac{-b-\sqrt{D}}{2.a} & x_2 & = \frac{-b+\sqrt{D}}{2.a} \\
& = \frac{-25-\sqrt49}{2.72} & & = \frac{-25+\sqrt49}{2.72} \\
& = \frac{-32}{144} & & = \frac{-18}{144} \\
& = \frac{-2}{9} & & = \frac{-1}{8} \\ \\ V &= \Big\{ \frac{-2}{9} ; \frac{-1}{8} \Big\} & &\end{align} \\ -----------------\)
- \(4x^2-11x+21=5x+5\\
\Leftrightarrow 4x^2-16x+16=0 \\\text{We zoeken de oplossingen van } \color{blue}{4x^2-16x+16=0} \\ \\\begin{align}
D & = b^2 - 4.a.c & & \\
& = (-16)^2-4.4.16 & &\\
& = 256-256 & & \\
& = 0 & & \\ x & = \frac{-b\pm \sqrt{D}}{2.a} & & \\
& = \frac{-(-16)}{2.4} & & \\
& = 2 & & \\V &= \Big\{ 2 \Big\} & &\end{align} \\ -----------------\)
- \(\text{We zoeken de oplossingen van } \color{blue}{x^2-x-132=0} \\ \\\begin{align}
D & = b^2 - 4.a.c & & \\
& = (-1)^2-4.1.(-132) & &\\
& = 1+528 & & \\
& = 529 & & \\ \\
x_1 & = \frac{-b-\sqrt{D}}{2.a} & x_2 & = \frac{-b+\sqrt{D}}{2.a} \\
& = \frac{-(-1)-\sqrt529}{2.1} & & = \frac{-(-1)+\sqrt529}{2.1} \\
& = \frac{-22}{2} & & = \frac{24}{2} \\
& = -11 & & = 12 \\ \\ V &= \Big\{ -11 ; 12 \Big\} & &\end{align} \\ -----------------\)
- \(\text{We zoeken de oplossingen van } \color{blue}{4x^2+25x+36=0} \\ \\\begin{align}
D & = b^2 - 4.a.c & & \\
& = (25)^2-4.4.36 & &\\
& = 625-576 & & \\
& = 49 & & \\ \\
x_1 & = \frac{-b-\sqrt{D}}{2.a} & x_2 & = \frac{-b+\sqrt{D}}{2.a} \\
& = \frac{-25-\sqrt49}{2.4} & & = \frac{-25+\sqrt49}{2.4} \\
& = \frac{-32}{8} & & = \frac{-18}{8} \\
& = -4 & & = \frac{-9}{4} \\ \\ V &= \Big\{ -4 ; \frac{-9}{4} \Big\} & &\end{align} \\ -----------------\)
- \(\text{We zoeken de oplossingen van } \color{blue}{48x^2+7x-3=0} \\ \\\begin{align}
D & = b^2 - 4.a.c & & \\
& = (7)^2-4.48.(-3) & &\\
& = 49+576 & & \\
& = 625 & & \\ \\
x_1 & = \frac{-b-\sqrt{D}}{2.a} & x_2 & = \frac{-b+\sqrt{D}}{2.a} \\
& = \frac{-7-\sqrt625}{2.48} & & = \frac{-7+\sqrt625}{2.48} \\
& = \frac{-32}{96} & & = \frac{18}{96} \\
& = \frac{-1}{3} & & = \frac{3}{16} \\ \\ V &= \Big\{ \frac{-1}{3} ; \frac{3}{16} \Big\} & &\end{align} \\ -----------------\)
- \(\text{We zoeken de oplossingen van } \color{blue}{16x^2+10x+1=0} \\ \\\begin{align}
D & = b^2 - 4.a.c & & \\
& = (10)^2-4.16.1 & &\\
& = 100-64 & & \\
& = 36 & & \\ \\
x_1 & = \frac{-b-\sqrt{D}}{2.a} & x_2 & = \frac{-b+\sqrt{D}}{2.a} \\
& = \frac{-10-\sqrt36}{2.16} & & = \frac{-10+\sqrt36}{2.16} \\
& = \frac{-16}{32} & & = \frac{-4}{32} \\
& = \frac{-1}{2} & & = \frac{-1}{8} \\ \\ V &= \Big\{ \frac{-1}{2} ; \frac{-1}{8} \Big\} & &\end{align} \\ -----------------\)
- \(\text{We zoeken de oplossingen van } \color{blue}{16x^2+4x+25=0} \\ \\\begin{align}
D & = b^2 - 4.a.c & & \\
& = (4)^2-4.16.25 & &\\
& = 16-1600 & & \\
& = -1584 & & \\ & < 0 \\V &= \varnothing \end{align} \\ -----------------\)
- \(\text{We zoeken de oplossingen van } \color{blue}{3x^2+7x-48=0} \\ \\\begin{align}
D & = b^2 - 4.a.c & & \\
& = (7)^2-4.3.(-48) & &\\
& = 49+576 & & \\
& = 625 & & \\ \\
x_1 & = \frac{-b-\sqrt{D}}{2.a} & x_2 & = \frac{-b+\sqrt{D}}{2.a} \\
& = \frac{-7-\sqrt625}{2.3} & & = \frac{-7+\sqrt625}{2.3} \\
& = \frac{-32}{6} & & = \frac{18}{6} \\
& = \frac{-16}{3} & & = 3 \\ \\ V &= \Big\{ \frac{-16}{3} ; 3 \Big\} & &\end{align} \\ -----------------\)
- \(x^2-23x+148=x+4\\
\Leftrightarrow x^2-24x+144=0 \\\text{We zoeken de oplossingen van } \color{blue}{x^2-24x+144=0} \\ \\\begin{align}
D & = b^2 - 4.a.c & & \\
& = (-24)^2-4.1.144 & &\\
& = 576-576 & & \\
& = 0 & & \\ x & = \frac{-b\pm \sqrt{D}}{2.a} & & \\
& = \frac{-(-24)}{2.1} & & \\
& = 12 & & \\V &= \Big\{ 12 \Big\} & &\end{align} \\ -----------------\)