Vierkantsvergelijkingen (VKV)

Hoofdmenu Eentje per keer 

Gebruik de discriminant om volgende vierkantsvergelijkingen op te lossen

  1. \(12x^2+30x+9=5x-3\)
  2. \(16x^2-37x+27=11x-9\)
  3. \(72x^2+3x+5=-4x+7\)
  4. \(16x^2+6x-1=0\)
  5. \(16x^2+10x+1=0\)
  6. \(x^2-10x+113=12x-8\)
  7. \(x^2+8x-10=6x-7\)
  8. \(x^2-14x-3=-9x-9\)
  9. \(2x^2+15x-8=0\)
  10. \(4x^2-44x+121=0\)
  11. \(3x^2+5x-12=0\)
  12. \(x^2+4x+15=-x+9\)

Gebruik de discriminant om volgende vierkantsvergelijkingen op te lossen

Verbetersleutel

  1. \(12x^2+30x+9=5x-3\\ \Leftrightarrow 12x^2+25x+12=0 \\\text{We zoeken de oplossingen van } \color{blue}{12x^2+25x+12=0} \\ \\\begin{align} D & = b^2 - 4.a.c & & \\ & = (25)^2-4.12.12 & &\\ & = 625-576 & & \\ & = 49 & & \\ \\ x_1 & = \frac{-b-\sqrt{D}}{2.a} & x_2 & = \frac{-b+\sqrt{D}}{2.a} \\ & = \frac{-25-\sqrt49}{2.12} & & = \frac{-25+\sqrt49}{2.12} \\ & = \frac{-32}{24} & & = \frac{-18}{24} \\ & = \frac{-4}{3} & & = \frac{-3}{4} \\ \\ V &= \Big\{ \frac{-4}{3} ; \frac{-3}{4} \Big\} & &\end{align} \\ -----------------\)
  2. \(16x^2-37x+27=11x-9\\ \Leftrightarrow 16x^2-48x+36=0 \\\text{We zoeken de oplossingen van } \color{blue}{16x^2-48x+36=0} \\ \\\begin{align} D & = b^2 - 4.a.c & & \\ & = (-48)^2-4.16.36 & &\\ & = 2304-2304 & & \\ & = 0 & & \\ x & = \frac{-b\pm \sqrt{D}}{2.a} & & \\ & = \frac{-(-48)}{2.16} & & \\ & = \frac{3}{2} & & \\V &= \Big\{ \frac{3}{2} \Big\} & &\end{align} \\ -----------------\)
  3. \(72x^2+3x+5=-4x+7\\ \Leftrightarrow 72x^2+7x-2=0 \\\text{We zoeken de oplossingen van } \color{blue}{72x^2+7x-2=0} \\ \\\begin{align} D & = b^2 - 4.a.c & & \\ & = (7)^2-4.72.(-2) & &\\ & = 49+576 & & \\ & = 625 & & \\ \\ x_1 & = \frac{-b-\sqrt{D}}{2.a} & x_2 & = \frac{-b+\sqrt{D}}{2.a} \\ & = \frac{-7-\sqrt625}{2.72} & & = \frac{-7+\sqrt625}{2.72} \\ & = \frac{-32}{144} & & = \frac{18}{144} \\ & = \frac{-2}{9} & & = \frac{1}{8} \\ \\ V &= \Big\{ \frac{-2}{9} ; \frac{1}{8} \Big\} & &\end{align} \\ -----------------\)
  4. \(\text{We zoeken de oplossingen van } \color{blue}{16x^2+6x-1=0} \\ \\\begin{align} D & = b^2 - 4.a.c & & \\ & = (6)^2-4.16.(-1) & &\\ & = 36+64 & & \\ & = 100 & & \\ \\ x_1 & = \frac{-b-\sqrt{D}}{2.a} & x_2 & = \frac{-b+\sqrt{D}}{2.a} \\ & = \frac{-6-\sqrt100}{2.16} & & = \frac{-6+\sqrt100}{2.16} \\ & = \frac{-16}{32} & & = \frac{4}{32} \\ & = \frac{-1}{2} & & = \frac{1}{8} \\ \\ V &= \Big\{ \frac{-1}{2} ; \frac{1}{8} \Big\} & &\end{align} \\ -----------------\)
  5. \(\text{We zoeken de oplossingen van } \color{blue}{16x^2+10x+1=0} \\ \\\begin{align} D & = b^2 - 4.a.c & & \\ & = (10)^2-4.16.1 & &\\ & = 100-64 & & \\ & = 36 & & \\ \\ x_1 & = \frac{-b-\sqrt{D}}{2.a} & x_2 & = \frac{-b+\sqrt{D}}{2.a} \\ & = \frac{-10-\sqrt36}{2.16} & & = \frac{-10+\sqrt36}{2.16} \\ & = \frac{-16}{32} & & = \frac{-4}{32} \\ & = \frac{-1}{2} & & = \frac{-1}{8} \\ \\ V &= \Big\{ \frac{-1}{2} ; \frac{-1}{8} \Big\} & &\end{align} \\ -----------------\)
  6. \(x^2-10x+113=12x-8\\ \Leftrightarrow x^2-22x+121=0 \\\text{We zoeken de oplossingen van } \color{blue}{x^2-22x+121=0} \\ \\\begin{align} D & = b^2 - 4.a.c & & \\ & = (-22)^2-4.1.121 & &\\ & = 484-484 & & \\ & = 0 & & \\ x & = \frac{-b\pm \sqrt{D}}{2.a} & & \\ & = \frac{-(-22)}{2.1} & & \\ & = 11 & & \\V &= \Big\{ 11 \Big\} & &\end{align} \\ -----------------\)
  7. \(x^2+8x-10=6x-7\\ \Leftrightarrow x^2+2x-3=0 \\\text{We zoeken de oplossingen van } \color{blue}{x^2+2x-3=0} \\ \\\begin{align} D & = b^2 - 4.a.c & & \\ & = (2)^2-4.1.(-3) & &\\ & = 4+12 & & \\ & = 16 & & \\ \\ x_1 & = \frac{-b-\sqrt{D}}{2.a} & x_2 & = \frac{-b+\sqrt{D}}{2.a} \\ & = \frac{-2-\sqrt16}{2.1} & & = \frac{-2+\sqrt16}{2.1} \\ & = \frac{-6}{2} & & = \frac{2}{2} \\ & = -3 & & = 1 \\ \\ V &= \Big\{ -3 ; 1 \Big\} & &\end{align} \\ -----------------\)
  8. \(x^2-14x-3=-9x-9\\ \Leftrightarrow x^2-5x+6=0 \\\text{We zoeken de oplossingen van } \color{blue}{x^2-5x+6=0} \\ \\\begin{align} D & = b^2 - 4.a.c & & \\ & = (-5)^2-4.1.6 & &\\ & = 25-24 & & \\ & = 1 & & \\ \\ x_1 & = \frac{-b-\sqrt{D}}{2.a} & x_2 & = \frac{-b+\sqrt{D}}{2.a} \\ & = \frac{-(-5)-\sqrt1}{2.1} & & = \frac{-(-5)+\sqrt1}{2.1} \\ & = \frac{4}{2} & & = \frac{6}{2} \\ & = 2 & & = 3 \\ \\ V &= \Big\{ 2 ; 3 \Big\} & &\end{align} \\ -----------------\)
  9. \(\text{We zoeken de oplossingen van } \color{blue}{2x^2+15x-8=0} \\ \\\begin{align} D & = b^2 - 4.a.c & & \\ & = (15)^2-4.2.(-8) & &\\ & = 225+64 & & \\ & = 289 & & \\ \\ x_1 & = \frac{-b-\sqrt{D}}{2.a} & x_2 & = \frac{-b+\sqrt{D}}{2.a} \\ & = \frac{-15-\sqrt289}{2.2} & & = \frac{-15+\sqrt289}{2.2} \\ & = \frac{-32}{4} & & = \frac{2}{4} \\ & = -8 & & = \frac{1}{2} \\ \\ V &= \Big\{ -8 ; \frac{1}{2} \Big\} & &\end{align} \\ -----------------\)
  10. \(\text{We zoeken de oplossingen van } \color{blue}{4x^2-44x+121=0} \\ \\\begin{align} D & = b^2 - 4.a.c & & \\ & = (-44)^2-4.4.121 & &\\ & = 1936-1936 & & \\ & = 0 & & \\ x & = \frac{-b\pm \sqrt{D}}{2.a} & & \\ & = \frac{-(-44)}{2.4} & & \\ & = \frac{11}{2} & & \\V &= \Big\{ \frac{11}{2} \Big\} & &\end{align} \\ -----------------\)
  11. \(\text{We zoeken de oplossingen van } \color{blue}{3x^2+5x-12=0} \\ \\\begin{align} D & = b^2 - 4.a.c & & \\ & = (5)^2-4.3.(-12) & &\\ & = 25+144 & & \\ & = 169 & & \\ \\ x_1 & = \frac{-b-\sqrt{D}}{2.a} & x_2 & = \frac{-b+\sqrt{D}}{2.a} \\ & = \frac{-5-\sqrt169}{2.3} & & = \frac{-5+\sqrt169}{2.3} \\ & = \frac{-18}{6} & & = \frac{8}{6} \\ & = -3 & & = \frac{4}{3} \\ \\ V &= \Big\{ -3 ; \frac{4}{3} \Big\} & &\end{align} \\ -----------------\)
  12. \(x^2+4x+15=-x+9\\ \Leftrightarrow x^2+5x+6=0 \\\text{We zoeken de oplossingen van } \color{blue}{x^2+5x+6=0} \\ \\\begin{align} D & = b^2 - 4.a.c & & \\ & = (5)^2-4.1.6 & &\\ & = 25-24 & & \\ & = 1 & & \\ \\ x_1 & = \frac{-b-\sqrt{D}}{2.a} & x_2 & = \frac{-b+\sqrt{D}}{2.a} \\ & = \frac{-5-\sqrt1}{2.1} & & = \frac{-5+\sqrt1}{2.1} \\ & = \frac{-6}{2} & & = \frac{-4}{2} \\ & = -3 & & = -2 \\ \\ V &= \Big\{ -3 ; -2 \Big\} & &\end{align} \\ -----------------\)
Oefeningengenerator vanhoeckes.be/wiskunde 2025-01-28 03:27:29