Maak de noemer wortelvrij
- \(\frac{23}{\sqrt{7}}\)
- \(\frac{24}{\sqrt{13}}\)
- \(\frac{56}{\sqrt{15}}\)
- \(\frac{55}{\sqrt{14}}\)
- \(\frac{56}{\sqrt{2}}\)
- \(\frac{60}{\sqrt{19}}\)
- \(\frac{49}{\sqrt{15}}\)
- \(\frac{3}{\sqrt{11}}\)
- \(\frac{6}{\sqrt{11}}\)
- \(\frac{13}{\sqrt{14}}\)
- \(\frac{16}{\sqrt{5}}\)
- \(\frac{20}{\sqrt{13}}\)
Maak de noemer wortelvrij
Verbetersleutel
- \(\frac{23}{\sqrt{7}}=\frac{23\cdot \color{red}{\sqrt{7}} }{\sqrt{7}\cdot \color{red}{\sqrt{7}} }=\frac{23\cdot\sqrt{7}}{7}\)
- \(\frac{24}{\sqrt{13}}=\frac{24\cdot \color{red}{\sqrt{13}} }{\sqrt{13}\cdot \color{red}{\sqrt{13}} }=\frac{24\cdot\sqrt{13}}{13}\)
- \(\frac{56}{\sqrt{15}}=\frac{56\cdot \color{red}{\sqrt{15}} }{\sqrt{15}\cdot \color{red}{\sqrt{15}} }=\frac{56\cdot\sqrt{15}}{15}\)
- \(\frac{55}{\sqrt{14}}=\frac{55\cdot \color{red}{\sqrt{14}} }{\sqrt{14}\cdot \color{red}{\sqrt{14}} }=\frac{55\cdot\sqrt{14}}{14}\)
- \(\frac{56}{\sqrt{2}}=\frac{56\cdot \color{red}{\sqrt{2}} }{\sqrt{2}\cdot \color{red}{\sqrt{2}} }=\frac{56\cdot\sqrt{2}}{2}=28\cdot\sqrt{2}\)
- \(\frac{60}{\sqrt{19}}=\frac{60\cdot \color{red}{\sqrt{19}} }{\sqrt{19}\cdot \color{red}{\sqrt{19}} }=\frac{60\cdot\sqrt{19}}{19}\)
- \(\frac{49}{\sqrt{15}}=\frac{49\cdot \color{red}{\sqrt{15}} }{\sqrt{15}\cdot \color{red}{\sqrt{15}} }=\frac{49\cdot\sqrt{15}}{15}\)
- \(\frac{3}{\sqrt{11}}=\frac{3\cdot \color{red}{\sqrt{11}} }{\sqrt{11}\cdot \color{red}{\sqrt{11}} }=\frac{3\cdot\sqrt{11}}{11}\)
- \(\frac{6}{\sqrt{11}}=\frac{6\cdot \color{red}{\sqrt{11}} }{\sqrt{11}\cdot \color{red}{\sqrt{11}} }=\frac{6\cdot\sqrt{11}}{11}\)
- \(\frac{13}{\sqrt{14}}=\frac{13\cdot \color{red}{\sqrt{14}} }{\sqrt{14}\cdot \color{red}{\sqrt{14}} }=\frac{13\cdot\sqrt{14}}{14}\)
- \(\frac{16}{\sqrt{5}}=\frac{16\cdot \color{red}{\sqrt{5}} }{\sqrt{5}\cdot \color{red}{\sqrt{5}} }=\frac{16\cdot\sqrt{5}}{5}\)
- \(\frac{20}{\sqrt{13}}=\frac{20\cdot \color{red}{\sqrt{13}} }{\sqrt{13}\cdot \color{red}{\sqrt{13}} }=\frac{20\cdot\sqrt{13}}{13}\)