Maak de noemer wortelvrij
- \(\frac{41}{\sqrt{6}}\)
- \(\frac{25}{\sqrt{10}}\)
- \(\frac{44}{\sqrt{6}}\)
- \(\frac{30}{\sqrt{6}}\)
- \(\frac{22}{\sqrt{6}}\)
- \(\frac{15}{\sqrt{17}}\)
- \(\frac{15}{\sqrt{8}}\)
- \(\frac{10}{\sqrt{6}}\)
- \(\frac{24}{\sqrt{10}}\)
- \(\frac{46}{\sqrt{17}}\)
- \(\frac{43}{\sqrt{17}}\)
- \(\frac{29}{\sqrt{8}}\)
Maak de noemer wortelvrij
Verbetersleutel
- \(\frac{41}{\sqrt{6}}=\frac{41\cdot \color{red}{\sqrt{6}} }{\sqrt{6}\cdot \color{red}{\sqrt{6}} }=\frac{41\cdot\sqrt{6}}{6}\)
- \(\frac{25}{\sqrt{10}}=\frac{25\cdot \color{red}{\sqrt{10}} }{\sqrt{10}\cdot \color{red}{\sqrt{10}} }=\frac{25\cdot\sqrt{10}}{10}=\frac{5\cdot\sqrt{10}}{2}\)
- \(\frac{44}{\sqrt{6}}=\frac{44\cdot \color{red}{\sqrt{6}} }{\sqrt{6}\cdot \color{red}{\sqrt{6}} }=\frac{44\cdot\sqrt{6}}{6}=\frac{22\cdot\sqrt{6}}{3}\)
- \(\frac{30}{\sqrt{6}}=\frac{30\cdot \color{red}{\sqrt{6}} }{\sqrt{6}\cdot \color{red}{\sqrt{6}} }=\frac{30\cdot\sqrt{6}}{6}=5\cdot\sqrt{6}\)
- \(\frac{22}{\sqrt{6}}=\frac{22\cdot \color{red}{\sqrt{6}} }{\sqrt{6}\cdot \color{red}{\sqrt{6}} }=\frac{22\cdot\sqrt{6}}{6}=\frac{11\cdot\sqrt{6}}{3}\)
- \(\frac{15}{\sqrt{17}}=\frac{15\cdot \color{red}{\sqrt{17}} }{\sqrt{17}\cdot \color{red}{\sqrt{17}} }=\frac{15\cdot\sqrt{17}}{17}\)
- \(\frac{15}{\sqrt{8}}=\frac{15\cdot \color{red}{\sqrt{8}} }{\sqrt{8}\cdot \color{red}{\sqrt{8}} }=\frac{15\cdot\sqrt{8}}{8}\)
- \(\frac{10}{\sqrt{6}}=\frac{10\cdot \color{red}{\sqrt{6}} }{\sqrt{6}\cdot \color{red}{\sqrt{6}} }=\frac{10\cdot\sqrt{6}}{6}=\frac{5\cdot\sqrt{6}}{3}\)
- \(\frac{24}{\sqrt{10}}=\frac{24\cdot \color{red}{\sqrt{10}} }{\sqrt{10}\cdot \color{red}{\sqrt{10}} }=\frac{24\cdot\sqrt{10}}{10}=\frac{12\cdot\sqrt{10}}{5}\)
- \(\frac{46}{\sqrt{17}}=\frac{46\cdot \color{red}{\sqrt{17}} }{\sqrt{17}\cdot \color{red}{\sqrt{17}} }=\frac{46\cdot\sqrt{17}}{17}\)
- \(\frac{43}{\sqrt{17}}=\frac{43\cdot \color{red}{\sqrt{17}} }{\sqrt{17}\cdot \color{red}{\sqrt{17}} }=\frac{43\cdot\sqrt{17}}{17}\)
- \(\frac{29}{\sqrt{8}}=\frac{29\cdot \color{red}{\sqrt{8}} }{\sqrt{8}\cdot \color{red}{\sqrt{8}} }=\frac{29\cdot\sqrt{8}}{8}\)