Bepaal de waarde van x. Meerdere manieren van oplossen mogelijk
- \(7x+11=-1+5x\)
- \(5x+2=8+14x\)
- \(-12x+3=-3-11x\)
- \(x-4=-5+12x\)
- \(-8x+7=5-5x\)
- \(-14x-7=3+5x\)
- \(-15x+9=-5+14x\)
- \(4x-14=-14+9x\)
- \(3x-9=-6-8x\)
- \(6x+2=9+13x\)
- \(-6x+8=14+11x\)
- \(-12x-8=5+5x\)
Bepaal de waarde van x. Meerdere manieren van oplossen mogelijk
Verbetersleutel
- \(\begin{align} & 7x \color{red}{+11}& = & -1 \color{red}{ +5x } \\\Leftrightarrow & 7x \color{red}{+11}\color{blue}{-11-5x }
& = & -1 \color{red}{ +5x }\color{blue}{-11-5x } \\\Leftrightarrow & 7x \color{blue}{-5x }
& = & -1 \color{blue}{-11} \\\Leftrightarrow &2x
& = &-12\\\Leftrightarrow & \color{red}{2}x
& = &-12\\\Leftrightarrow & \frac{\color{red}{2}x}{ \color{blue}{ 2}}
& = & \frac{-12}{2} \\\Leftrightarrow & \color{green}{ x = -6 } & & \\ & V = \left\{ -6 \right\} & \\\end{align}\)
- \(\begin{align} & 5x \color{red}{+2}& = & 8 \color{red}{ +14x } \\\Leftrightarrow & 5x \color{red}{+2}\color{blue}{-2-14x }
& = & 8 \color{red}{ +14x }\color{blue}{-2-14x } \\\Leftrightarrow & 5x \color{blue}{-14x }
& = & 8 \color{blue}{-2} \\\Leftrightarrow &-9x
& = &6\\\Leftrightarrow & \color{red}{-9}x
& = &6\\\Leftrightarrow & \frac{\color{red}{-9}x}{ \color{blue}{ -9}}
& = & \frac{6}{-9} \\\Leftrightarrow & \color{green}{ x = \frac{-2}{3} } & & \\ & V = \left\{ \frac{-2}{3} \right\} & \\\end{align}\)
- \(\begin{align} & -12x \color{red}{+3}& = & -3 \color{red}{ -11x } \\\Leftrightarrow & -12x \color{red}{+3}\color{blue}{-3+11x }
& = & -3 \color{red}{ -11x }\color{blue}{-3+11x } \\\Leftrightarrow & -12x \color{blue}{+11x }
& = & -3 \color{blue}{-3} \\\Leftrightarrow &-x
& = &-6\\\Leftrightarrow & \color{red}{-}x
& = &-6\\\Leftrightarrow & \frac{\color{red}{-}x}{ \color{blue}{ -1}}
& = & \frac{-6}{-1} \\\Leftrightarrow & \color{green}{ x = 6 } & & \\ & V = \left\{ 6 \right\} & \\\end{align}\)
- \(\begin{align} & x \color{red}{-4}& = & -5 \color{red}{ +12x } \\\Leftrightarrow & x \color{red}{-4}\color{blue}{+4-12x }
& = & -5 \color{red}{ +12x }\color{blue}{+4-12x } \\\Leftrightarrow & x \color{blue}{-12x }
& = & -5 \color{blue}{+4} \\\Leftrightarrow &-11x
& = &-1\\\Leftrightarrow & \color{red}{-11}x
& = &-1\\\Leftrightarrow & \frac{\color{red}{-11}x}{ \color{blue}{ -11}}
& = & \frac{-1}{-11} \\\Leftrightarrow & \color{green}{ x = \frac{1}{11} } & & \\ & V = \left\{ \frac{1}{11} \right\} & \\\end{align}\)
- \(\begin{align} & -8x \color{red}{+7}& = & 5 \color{red}{ -5x } \\\Leftrightarrow & -8x \color{red}{+7}\color{blue}{-7+5x }
& = & 5 \color{red}{ -5x }\color{blue}{-7+5x } \\\Leftrightarrow & -8x \color{blue}{+5x }
& = & 5 \color{blue}{-7} \\\Leftrightarrow &-3x
& = &-2\\\Leftrightarrow & \color{red}{-3}x
& = &-2\\\Leftrightarrow & \frac{\color{red}{-3}x}{ \color{blue}{ -3}}
& = & \frac{-2}{-3} \\\Leftrightarrow & \color{green}{ x = \frac{2}{3} } & & \\ & V = \left\{ \frac{2}{3} \right\} & \\\end{align}\)
- \(\begin{align} & -14x \color{red}{-7}& = & 3 \color{red}{ +5x } \\\Leftrightarrow & -14x \color{red}{-7}\color{blue}{+7-5x }
& = & 3 \color{red}{ +5x }\color{blue}{+7-5x } \\\Leftrightarrow & -14x \color{blue}{-5x }
& = & 3 \color{blue}{+7} \\\Leftrightarrow &-19x
& = &10\\\Leftrightarrow & \color{red}{-19}x
& = &10\\\Leftrightarrow & \frac{\color{red}{-19}x}{ \color{blue}{ -19}}
& = & \frac{10}{-19} \\\Leftrightarrow & \color{green}{ x = \frac{-10}{19} } & & \\ & V = \left\{ \frac{-10}{19} \right\} & \\\end{align}\)
- \(\begin{align} & -15x \color{red}{+9}& = & -5 \color{red}{ +14x } \\\Leftrightarrow & -15x \color{red}{+9}\color{blue}{-9-14x }
& = & -5 \color{red}{ +14x }\color{blue}{-9-14x } \\\Leftrightarrow & -15x \color{blue}{-14x }
& = & -5 \color{blue}{-9} \\\Leftrightarrow &-29x
& = &-14\\\Leftrightarrow & \color{red}{-29}x
& = &-14\\\Leftrightarrow & \frac{\color{red}{-29}x}{ \color{blue}{ -29}}
& = & \frac{-14}{-29} \\\Leftrightarrow & \color{green}{ x = \frac{14}{29} } & & \\ & V = \left\{ \frac{14}{29} \right\} & \\\end{align}\)
- \(\begin{align} & 4x \color{red}{-14}& = & -14 \color{red}{ +9x } \\\Leftrightarrow & 4x \color{red}{-14}\color{blue}{+14-9x }
& = & -14 \color{red}{ +9x }\color{blue}{+14-9x } \\\Leftrightarrow & 4x \color{blue}{-9x }
& = & -14 \color{blue}{+14} \\\Leftrightarrow &-5x
& = &0\\\Leftrightarrow & \color{red}{-5}x
& = &0\\\Leftrightarrow & \frac{\color{red}{-5}x}{ \color{blue}{ -5}}
& = & \frac{0}{-5} \\\Leftrightarrow & \color{green}{ x = 0 } & & \\ & V = \left\{ 0 \right\} & \\\end{align}\)
- \(\begin{align} & 3x \color{red}{-9}& = & -6 \color{red}{ -8x } \\\Leftrightarrow & 3x \color{red}{-9}\color{blue}{+9+8x }
& = & -6 \color{red}{ -8x }\color{blue}{+9+8x } \\\Leftrightarrow & 3x \color{blue}{+8x }
& = & -6 \color{blue}{+9} \\\Leftrightarrow &11x
& = &3\\\Leftrightarrow & \color{red}{11}x
& = &3\\\Leftrightarrow & \frac{\color{red}{11}x}{ \color{blue}{ 11}}
& = & \frac{3}{11} \\\Leftrightarrow & \color{green}{ x = \frac{3}{11} } & & \\ & V = \left\{ \frac{3}{11} \right\} & \\\end{align}\)
- \(\begin{align} & 6x \color{red}{+2}& = & 9 \color{red}{ +13x } \\\Leftrightarrow & 6x \color{red}{+2}\color{blue}{-2-13x }
& = & 9 \color{red}{ +13x }\color{blue}{-2-13x } \\\Leftrightarrow & 6x \color{blue}{-13x }
& = & 9 \color{blue}{-2} \\\Leftrightarrow &-7x
& = &7\\\Leftrightarrow & \color{red}{-7}x
& = &7\\\Leftrightarrow & \frac{\color{red}{-7}x}{ \color{blue}{ -7}}
& = & \frac{7}{-7} \\\Leftrightarrow & \color{green}{ x = -1 } & & \\ & V = \left\{ -1 \right\} & \\\end{align}\)
- \(\begin{align} & -6x \color{red}{+8}& = & 14 \color{red}{ +11x } \\\Leftrightarrow & -6x \color{red}{+8}\color{blue}{-8-11x }
& = & 14 \color{red}{ +11x }\color{blue}{-8-11x } \\\Leftrightarrow & -6x \color{blue}{-11x }
& = & 14 \color{blue}{-8} \\\Leftrightarrow &-17x
& = &6\\\Leftrightarrow & \color{red}{-17}x
& = &6\\\Leftrightarrow & \frac{\color{red}{-17}x}{ \color{blue}{ -17}}
& = & \frac{6}{-17} \\\Leftrightarrow & \color{green}{ x = \frac{-6}{17} } & & \\ & V = \left\{ \frac{-6}{17} \right\} & \\\end{align}\)
- \(\begin{align} & -12x \color{red}{-8}& = & 5 \color{red}{ +5x } \\\Leftrightarrow & -12x \color{red}{-8}\color{blue}{+8-5x }
& = & 5 \color{red}{ +5x }\color{blue}{+8-5x } \\\Leftrightarrow & -12x \color{blue}{-5x }
& = & 5 \color{blue}{+8} \\\Leftrightarrow &-17x
& = &13\\\Leftrightarrow & \color{red}{-17}x
& = &13\\\Leftrightarrow & \frac{\color{red}{-17}x}{ \color{blue}{ -17}}
& = & \frac{13}{-17} \\\Leftrightarrow & \color{green}{ x = \frac{-13}{17} } & & \\ & V = \left\{ \frac{-13}{17} \right\} & \\\end{align}\)