Bepaal de waarde van x. Meerdere manieren van oplossen mogelijk
- \(13x+8=10+9x\)
- \(8x+1=5+x\)
- \(11x-3=-6-13x\)
- \(10x+11=-11+3x\)
- \(-5x+5=7+4x\)
- \(-11x-1=1+13x\)
- \(12x+3=-11-11x\)
- \(-15x+9=10-11x\)
- \(-14x-8=-5-13x\)
- \(-10x-7=13+13x\)
- \(8x-9=1+9x\)
- \(x+1=6+9x\)
Bepaal de waarde van x. Meerdere manieren van oplossen mogelijk
Verbetersleutel
- \(\begin{align} & 13x \color{red}{+8}& = & 10 \color{red}{ +9x } \\\Leftrightarrow & 13x \color{red}{+8}\color{blue}{-8-9x }
& = & 10 \color{red}{ +9x }\color{blue}{-8-9x } \\\Leftrightarrow & 13x \color{blue}{-9x }
& = & 10 \color{blue}{-8} \\\Leftrightarrow &4x
& = &2\\\Leftrightarrow & \color{red}{4}x
& = &2\\\Leftrightarrow & \frac{\color{red}{4}x}{ \color{blue}{ 4}}
& = & \frac{2}{4} \\\Leftrightarrow & \color{green}{ x = \frac{1}{2} } & & \\ & V = \left\{ \frac{1}{2} \right\} & \\\end{align}\)
- \(\begin{align} & 8x \color{red}{+1}& = & 5 \color{red}{ +x } \\\Leftrightarrow & 8x \color{red}{+1}\color{blue}{-1-x }
& = & 5 \color{red}{ +x }\color{blue}{-1-x } \\\Leftrightarrow & 8x \color{blue}{-x }
& = & 5 \color{blue}{-1} \\\Leftrightarrow &7x
& = &4\\\Leftrightarrow & \color{red}{7}x
& = &4\\\Leftrightarrow & \frac{\color{red}{7}x}{ \color{blue}{ 7}}
& = & \frac{4}{7} \\\Leftrightarrow & \color{green}{ x = \frac{4}{7} } & & \\ & V = \left\{ \frac{4}{7} \right\} & \\\end{align}\)
- \(\begin{align} & 11x \color{red}{-3}& = & -6 \color{red}{ -13x } \\\Leftrightarrow & 11x \color{red}{-3}\color{blue}{+3+13x }
& = & -6 \color{red}{ -13x }\color{blue}{+3+13x } \\\Leftrightarrow & 11x \color{blue}{+13x }
& = & -6 \color{blue}{+3} \\\Leftrightarrow &24x
& = &-3\\\Leftrightarrow & \color{red}{24}x
& = &-3\\\Leftrightarrow & \frac{\color{red}{24}x}{ \color{blue}{ 24}}
& = & \frac{-3}{24} \\\Leftrightarrow & \color{green}{ x = \frac{-1}{8} } & & \\ & V = \left\{ \frac{-1}{8} \right\} & \\\end{align}\)
- \(\begin{align} & 10x \color{red}{+11}& = & -11 \color{red}{ +3x } \\\Leftrightarrow & 10x \color{red}{+11}\color{blue}{-11-3x }
& = & -11 \color{red}{ +3x }\color{blue}{-11-3x } \\\Leftrightarrow & 10x \color{blue}{-3x }
& = & -11 \color{blue}{-11} \\\Leftrightarrow &7x
& = &-22\\\Leftrightarrow & \color{red}{7}x
& = &-22\\\Leftrightarrow & \frac{\color{red}{7}x}{ \color{blue}{ 7}}
& = & \frac{-22}{7} \\\Leftrightarrow & \color{green}{ x = \frac{-22}{7} } & & \\ & V = \left\{ \frac{-22}{7} \right\} & \\\end{align}\)
- \(\begin{align} & -5x \color{red}{+5}& = & 7 \color{red}{ +4x } \\\Leftrightarrow & -5x \color{red}{+5}\color{blue}{-5-4x }
& = & 7 \color{red}{ +4x }\color{blue}{-5-4x } \\\Leftrightarrow & -5x \color{blue}{-4x }
& = & 7 \color{blue}{-5} \\\Leftrightarrow &-9x
& = &2\\\Leftrightarrow & \color{red}{-9}x
& = &2\\\Leftrightarrow & \frac{\color{red}{-9}x}{ \color{blue}{ -9}}
& = & \frac{2}{-9} \\\Leftrightarrow & \color{green}{ x = \frac{-2}{9} } & & \\ & V = \left\{ \frac{-2}{9} \right\} & \\\end{align}\)
- \(\begin{align} & -11x \color{red}{-1}& = & 1 \color{red}{ +13x } \\\Leftrightarrow & -11x \color{red}{-1}\color{blue}{+1-13x }
& = & 1 \color{red}{ +13x }\color{blue}{+1-13x } \\\Leftrightarrow & -11x \color{blue}{-13x }
& = & 1 \color{blue}{+1} \\\Leftrightarrow &-24x
& = &2\\\Leftrightarrow & \color{red}{-24}x
& = &2\\\Leftrightarrow & \frac{\color{red}{-24}x}{ \color{blue}{ -24}}
& = & \frac{2}{-24} \\\Leftrightarrow & \color{green}{ x = \frac{-1}{12} } & & \\ & V = \left\{ \frac{-1}{12} \right\} & \\\end{align}\)
- \(\begin{align} & 12x \color{red}{+3}& = & -11 \color{red}{ -11x } \\\Leftrightarrow & 12x \color{red}{+3}\color{blue}{-3+11x }
& = & -11 \color{red}{ -11x }\color{blue}{-3+11x } \\\Leftrightarrow & 12x \color{blue}{+11x }
& = & -11 \color{blue}{-3} \\\Leftrightarrow &23x
& = &-14\\\Leftrightarrow & \color{red}{23}x
& = &-14\\\Leftrightarrow & \frac{\color{red}{23}x}{ \color{blue}{ 23}}
& = & \frac{-14}{23} \\\Leftrightarrow & \color{green}{ x = \frac{-14}{23} } & & \\ & V = \left\{ \frac{-14}{23} \right\} & \\\end{align}\)
- \(\begin{align} & -15x \color{red}{+9}& = & 10 \color{red}{ -11x } \\\Leftrightarrow & -15x \color{red}{+9}\color{blue}{-9+11x }
& = & 10 \color{red}{ -11x }\color{blue}{-9+11x } \\\Leftrightarrow & -15x \color{blue}{+11x }
& = & 10 \color{blue}{-9} \\\Leftrightarrow &-4x
& = &1\\\Leftrightarrow & \color{red}{-4}x
& = &1\\\Leftrightarrow & \frac{\color{red}{-4}x}{ \color{blue}{ -4}}
& = & \frac{1}{-4} \\\Leftrightarrow & \color{green}{ x = \frac{-1}{4} } & & \\ & V = \left\{ \frac{-1}{4} \right\} & \\\end{align}\)
- \(\begin{align} & -14x \color{red}{-8}& = & -5 \color{red}{ -13x } \\\Leftrightarrow & -14x \color{red}{-8}\color{blue}{+8+13x }
& = & -5 \color{red}{ -13x }\color{blue}{+8+13x } \\\Leftrightarrow & -14x \color{blue}{+13x }
& = & -5 \color{blue}{+8} \\\Leftrightarrow &-x
& = &3\\\Leftrightarrow & \color{red}{-}x
& = &3\\\Leftrightarrow & \frac{\color{red}{-}x}{ \color{blue}{ -1}}
& = & \frac{3}{-1} \\\Leftrightarrow & \color{green}{ x = -3 } & & \\ & V = \left\{ -3 \right\} & \\\end{align}\)
- \(\begin{align} & -10x \color{red}{-7}& = & 13 \color{red}{ +13x } \\\Leftrightarrow & -10x \color{red}{-7}\color{blue}{+7-13x }
& = & 13 \color{red}{ +13x }\color{blue}{+7-13x } \\\Leftrightarrow & -10x \color{blue}{-13x }
& = & 13 \color{blue}{+7} \\\Leftrightarrow &-23x
& = &20\\\Leftrightarrow & \color{red}{-23}x
& = &20\\\Leftrightarrow & \frac{\color{red}{-23}x}{ \color{blue}{ -23}}
& = & \frac{20}{-23} \\\Leftrightarrow & \color{green}{ x = \frac{-20}{23} } & & \\ & V = \left\{ \frac{-20}{23} \right\} & \\\end{align}\)
- \(\begin{align} & 8x \color{red}{-9}& = & 1 \color{red}{ +9x } \\\Leftrightarrow & 8x \color{red}{-9}\color{blue}{+9-9x }
& = & 1 \color{red}{ +9x }\color{blue}{+9-9x } \\\Leftrightarrow & 8x \color{blue}{-9x }
& = & 1 \color{blue}{+9} \\\Leftrightarrow &-x
& = &10\\\Leftrightarrow & \color{red}{-}x
& = &10\\\Leftrightarrow & \frac{\color{red}{-}x}{ \color{blue}{ -1}}
& = & \frac{10}{-1} \\\Leftrightarrow & \color{green}{ x = -10 } & & \\ & V = \left\{ -10 \right\} & \\\end{align}\)
- \(\begin{align} & x \color{red}{+1}& = & 6 \color{red}{ +9x } \\\Leftrightarrow & x \color{red}{+1}\color{blue}{-1-9x }
& = & 6 \color{red}{ +9x }\color{blue}{-1-9x } \\\Leftrightarrow & x \color{blue}{-9x }
& = & 6 \color{blue}{-1} \\\Leftrightarrow &-8x
& = &5\\\Leftrightarrow & \color{red}{-8}x
& = &5\\\Leftrightarrow & \frac{\color{red}{-8}x}{ \color{blue}{ -8}}
& = & \frac{5}{-8} \\\Leftrightarrow & \color{green}{ x = \frac{-5}{8} } & & \\ & V = \left\{ \frac{-5}{8} \right\} & \\\end{align}\)