Bepaal de waarde van x.
- \(-6x+3=-10\)
- \(-10x+10=-1\)
- \(-2x+5=-14\)
- \(10x+5=1\)
- \(8x+4=-7\)
- \(-15x-8=-3\)
- \(3x+1=-12\)
- \(-12x+1=3\)
- \(-14x-9=-7\)
- \(9x+5=11\)
- \(9x+15=-8\)
- \(-11x+6=13\)
Bepaal de waarde van x.
Verbetersleutel
- \(\begin{align} & -6x \color{red}{+3}& = &-10 \\\Leftrightarrow & -6x \color{red}{+3}\color{blue}{-3}
& = &-10\color{blue}{-3} \\\Leftrightarrow &-6x
& = &-13\\\Leftrightarrow & \color{red}{-6}x
& = &-13\\\Leftrightarrow & \frac{\color{red}{-6}x}{ \color{blue}-6}
& = & \frac{-13}{-6} \\\Leftrightarrow & \color{green}{ x = \frac{13}{6} } & & \\ & V = \left\{ \frac{13}{6} \right\} & \\\end{align}\)
- \(\begin{align} & -10x \color{red}{+10}& = &-1 \\\Leftrightarrow & -10x \color{red}{+10}\color{blue}{-10}
& = &-1\color{blue}{-10} \\\Leftrightarrow &-10x
& = &-11\\\Leftrightarrow & \color{red}{-10}x
& = &-11\\\Leftrightarrow & \frac{\color{red}{-10}x}{ \color{blue}-10}
& = & \frac{-11}{-10} \\\Leftrightarrow & \color{green}{ x = \frac{11}{10} } & & \\ & V = \left\{ \frac{11}{10} \right\} & \\\end{align}\)
- \(\begin{align} & -2x \color{red}{+5}& = &-14 \\\Leftrightarrow & -2x \color{red}{+5}\color{blue}{-5}
& = &-14\color{blue}{-5} \\\Leftrightarrow &-2x
& = &-19\\\Leftrightarrow & \color{red}{-2}x
& = &-19\\\Leftrightarrow & \frac{\color{red}{-2}x}{ \color{blue}-2}
& = & \frac{-19}{-2} \\\Leftrightarrow & \color{green}{ x = \frac{19}{2} } & & \\ & V = \left\{ \frac{19}{2} \right\} & \\\end{align}\)
- \(\begin{align} & 10x \color{red}{+5}& = &1 \\\Leftrightarrow & 10x \color{red}{+5}\color{blue}{-5}
& = &1\color{blue}{-5} \\\Leftrightarrow &10x
& = &-4\\\Leftrightarrow & \color{red}{10}x
& = &-4\\\Leftrightarrow & \frac{\color{red}{10}x}{ \color{blue}10}
& = & \frac{-4}{10} \\\Leftrightarrow & \color{green}{ x = \frac{-2}{5} } & & \\ & V = \left\{ \frac{-2}{5} \right\} & \\\end{align}\)
- \(\begin{align} & 8x \color{red}{+4}& = &-7 \\\Leftrightarrow & 8x \color{red}{+4}\color{blue}{-4}
& = &-7\color{blue}{-4} \\\Leftrightarrow &8x
& = &-11\\\Leftrightarrow & \color{red}{8}x
& = &-11\\\Leftrightarrow & \frac{\color{red}{8}x}{ \color{blue}8}
& = & \frac{-11}{8} \\\Leftrightarrow & \color{green}{ x = \frac{-11}{8} } & & \\ & V = \left\{ \frac{-11}{8} \right\} & \\\end{align}\)
- \(\begin{align} & -15x \color{red}{-8}& = &-3 \\\Leftrightarrow & -15x \color{red}{-8}\color{blue}{+8}
& = &-3\color{blue}{+8} \\\Leftrightarrow &-15x
& = &5\\\Leftrightarrow & \color{red}{-15}x
& = &5\\\Leftrightarrow & \frac{\color{red}{-15}x}{ \color{blue}-15}
& = & \frac{5}{-15} \\\Leftrightarrow & \color{green}{ x = \frac{-1}{3} } & & \\ & V = \left\{ \frac{-1}{3} \right\} & \\\end{align}\)
- \(\begin{align} & 3x \color{red}{+1}& = &-12 \\\Leftrightarrow & 3x \color{red}{+1}\color{blue}{-1}
& = &-12\color{blue}{-1} \\\Leftrightarrow &3x
& = &-13\\\Leftrightarrow & \color{red}{3}x
& = &-13\\\Leftrightarrow & \frac{\color{red}{3}x}{ \color{blue}3}
& = & \frac{-13}{3} \\\Leftrightarrow & \color{green}{ x = \frac{-13}{3} } & & \\ & V = \left\{ \frac{-13}{3} \right\} & \\\end{align}\)
- \(\begin{align} & -12x \color{red}{+1}& = &3 \\\Leftrightarrow & -12x \color{red}{+1}\color{blue}{-1}
& = &3\color{blue}{-1} \\\Leftrightarrow &-12x
& = &2\\\Leftrightarrow & \color{red}{-12}x
& = &2\\\Leftrightarrow & \frac{\color{red}{-12}x}{ \color{blue}-12}
& = & \frac{2}{-12} \\\Leftrightarrow & \color{green}{ x = \frac{-1}{6} } & & \\ & V = \left\{ \frac{-1}{6} \right\} & \\\end{align}\)
- \(\begin{align} & -14x \color{red}{-9}& = &-7 \\\Leftrightarrow & -14x \color{red}{-9}\color{blue}{+9}
& = &-7\color{blue}{+9} \\\Leftrightarrow &-14x
& = &2\\\Leftrightarrow & \color{red}{-14}x
& = &2\\\Leftrightarrow & \frac{\color{red}{-14}x}{ \color{blue}-14}
& = & \frac{2}{-14} \\\Leftrightarrow & \color{green}{ x = \frac{-1}{7} } & & \\ & V = \left\{ \frac{-1}{7} \right\} & \\\end{align}\)
- \(\begin{align} & 9x \color{red}{+5}& = &11 \\\Leftrightarrow & 9x \color{red}{+5}\color{blue}{-5}
& = &11\color{blue}{-5} \\\Leftrightarrow &9x
& = &6\\\Leftrightarrow & \color{red}{9}x
& = &6\\\Leftrightarrow & \frac{\color{red}{9}x}{ \color{blue}9}
& = & \frac{6}{9} \\\Leftrightarrow & \color{green}{ x = \frac{2}{3} } & & \\ & V = \left\{ \frac{2}{3} \right\} & \\\end{align}\)
- \(\begin{align} & 9x \color{red}{+15}& = &-8 \\\Leftrightarrow & 9x \color{red}{+15}\color{blue}{-15}
& = &-8\color{blue}{-15} \\\Leftrightarrow &9x
& = &-23\\\Leftrightarrow & \color{red}{9}x
& = &-23\\\Leftrightarrow & \frac{\color{red}{9}x}{ \color{blue}9}
& = & \frac{-23}{9} \\\Leftrightarrow & \color{green}{ x = \frac{-23}{9} } & & \\ & V = \left\{ \frac{-23}{9} \right\} & \\\end{align}\)
- \(\begin{align} & -11x \color{red}{+6}& = &13 \\\Leftrightarrow & -11x \color{red}{+6}\color{blue}{-6}
& = &13\color{blue}{-6} \\\Leftrightarrow &-11x
& = &7\\\Leftrightarrow & \color{red}{-11}x
& = &7\\\Leftrightarrow & \frac{\color{red}{-11}x}{ \color{blue}-11}
& = & \frac{7}{-11} \\\Leftrightarrow & \color{green}{ x = \frac{-7}{11} } & & \\ & V = \left\{ \frac{-7}{11} \right\} & \\\end{align}\)