Bereken, herleid en rangschik naar dalende macht (ZRM toegestaan)
- \(4x^4(5x^3-x^5-3)\)
- \(-5x^4(-x^6+8x^5+3)\)
- \(-x^2(-x^3-7x^2-3)\)
- \((9x^3-8x^2+7x)-(-4x^2-4x-7x^3)\)
- \((-16x^2-10x) +(-10x+10) -(-20x-10)\)
- \((-15x-19)+(5x-16)\)
- \((-2x^2+2x+2)(-x^2+3x+1)\)
- \((6x^3-13x^2-2)-(-17x^3+8-3x)-(-7x-5x^2-6x^3)\)
- \((-x-8)+(14x-20)\)
- \((-10x^3+12x-2)+(-4x^3+12x^2-17)\)
- \((-8x+5)(-3x+2)\)
- \(2x(7x^2-2x+2)\)
Bereken, herleid en rangschik naar dalende macht (ZRM toegestaan)
Verbetersleutel
- \(4x^4(5x^3-x^5-3)=-4x^{9}+20x^{7}-12x^4\)
- \(-5x^4(-x^6+8x^5+3)=5x^{10}-40x^{9}-15x^4\)
- \(-x^2(-x^3-7x^2-3)=x^{5}+7x^{4}+3x^2\)
- \((9x^3-8x^2+7x)-(-4x^2-4x-7x^3)\\=9x^3-8x^2+7x+4x^2+4x+7x^3\\=16x^3-4x^2+11x\)
- \((-16x^2-10x) +(-10x+10) -(-20x-10)\\=-16x^2-10x-10x+10+20x+10\\=-16x^2+20\)
- \((-15x-19)+(5x-16)\\=-15x-19+5x-16\\=-10x-35\)
- \((-2x^2+2x+2)(-x^2+3x+1)\\=2x^4-6x^3-2x^2-2x^3+6x^2+2x-2x^2+6x+2\\=2x^4-8x^3+2x^2+8x+2\)
- \((6x^3-13x^2-2)-(-17x^3+8-3x)-(-7x-5x^2-6x^3)\\=6x^3-13x^2-2+17x^3-8+3x+7x+5x^2+6x^3\\=29x^3-8x^2+10x-10\)
- \((-x-8)+(14x-20)\\=-x-8+14x-20\\=13x-28\)
- \((-10x^3+12x-2)+(-4x^3+12x^2-17)\\=-10x^3+12x-2-4x^3+12x^2-17\\=-14x^3+12x^2+12x-19\)
- \((-8x+5)(-3x+2)\\=24x^2-16x-15x+10\\=24x^2-31x+10\)
- \(2x(7x^2-2x+2)=14x^3-4x^2+4x\)