Substitutie of combinatie
- \(\left\{\begin{matrix}-2y=\frac{-111}{10}+6x\\-x-4y=\frac{-23}{5}\end{matrix}\right.\)
- \(\left\{\begin{matrix}6y=\frac{431}{4}+x\\-5x-2y=\frac{-149}{4}\end{matrix}\right.\)
- \(\left\{\begin{matrix}-3x-4y=\frac{-115}{48}\\-3x-y=\frac{5}{48}\end{matrix}\right.\)
- \(\left\{\begin{matrix}-3x+6y=\frac{243}{35}\\x=-y+\frac{9}{35}\end{matrix}\right.\)
- \(\left\{\begin{matrix}2y=\frac{605}{6}+6x\\x-3y=\frac{-61}{4}\end{matrix}\right.\)
- \(\left\{\begin{matrix}4x+2y=\frac{362}{33}\\-6x=y+\frac{-185}{11}\end{matrix}\right.\)
- \(\left\{\begin{matrix}-6x+6y=\frac{-165}{4}\\4x=-y+\frac{-5}{2}\end{matrix}\right.\)
- \(\left\{\begin{matrix}4x-6y=\frac{640}{143}\\3x=-y+\frac{-488}{143}\end{matrix}\right.\)
- \(\left\{\begin{matrix}-3x+2y=\frac{-155}{68}\\-4x=-y+\frac{-555}{136}\end{matrix}\right.\)
- \(\left\{\begin{matrix}-2x+3y=\frac{-295}{112}\\2x+y=\frac{-13}{112}\end{matrix}\right.\)
- \(\left\{\begin{matrix}-2x+5y=\frac{880}{117}\\x+y=\frac{-76}{117}\end{matrix}\right.\)
- \(\left\{\begin{matrix}-2x-y=\frac{129}{35}\\-3x+3y=\frac{621}{35}\end{matrix}\right.\)
Substitutie of combinatie
Verbetersleutel
- \(\left\{\begin{matrix}-2y=\frac{-111}{10}+6x\\-x-4y=\frac{-23}{5}\end{matrix}\right.\qquad V=\{(\frac{8}{5},\frac{3}{4})\}\)
- \(\left\{\begin{matrix}6y=\frac{431}{4}+x\\-5x-2y=\frac{-149}{4}\end{matrix}\right.\qquad V=\{(\frac{1}{4},18)\}\)
- \(\left\{\begin{matrix}-3x-4y=\frac{-115}{48}\\-3x-y=\frac{5}{48}\end{matrix}\right.\qquad V=\{(\frac{-5}{16},\frac{5}{6})\}\)
- \(\left\{\begin{matrix}-3x+6y=\frac{243}{35}\\x=-y+\frac{9}{35}\end{matrix}\right.\qquad V=\{(\frac{-3}{5},\frac{6}{7})\}\)
- \(\left\{\begin{matrix}2y=\frac{605}{6}+6x\\x-3y=\frac{-61}{4}\end{matrix}\right.\qquad V=\{(-17,\frac{-7}{12})\}\)
- \(\left\{\begin{matrix}4x+2y=\frac{362}{33}\\-6x=y+\frac{-185}{11}\end{matrix}\right.\qquad V=\{(\frac{17}{6},\frac{-2}{11})\}\)
- \(\left\{\begin{matrix}-6x+6y=\frac{-165}{4}\\4x=-y+\frac{-5}{2}\end{matrix}\right.\qquad V=\{(\frac{7}{8},-6)\}\)
- \(\left\{\begin{matrix}4x-6y=\frac{640}{143}\\3x=-y+\frac{-488}{143}\end{matrix}\right.\qquad V=\{(\frac{-8}{11},\frac{-16}{13})\}\)
- \(\left\{\begin{matrix}-3x+2y=\frac{-155}{68}\\-4x=-y+\frac{-555}{136}\end{matrix}\right.\qquad V=\{(\frac{20}{17},\frac{5}{8})\}\)
- \(\left\{\begin{matrix}-2x+3y=\frac{-295}{112}\\2x+y=\frac{-13}{112}\end{matrix}\right.\qquad V=\{(\frac{2}{7},\frac{-11}{16})\}\)
- \(\left\{\begin{matrix}-2x+5y=\frac{880}{117}\\x+y=\frac{-76}{117}\end{matrix}\right.\qquad V=\{(\frac{-20}{13},\frac{8}{9})\}\)
- \(\left\{\begin{matrix}-2x-y=\frac{129}{35}\\-3x+3y=\frac{621}{35}\end{matrix}\right.\qquad V=\{(\frac{-16}{5},\frac{19}{7})\}\)