Substitutie of combinatie
- \(\left\{\begin{matrix}-x-4y=\frac{-43}{20}\\5x=3y+\frac{-81}{16}\end{matrix}\right.\)
- \(\left\{\begin{matrix}2x-y=\frac{-76}{15}\\-2x=3y+\frac{-28}{5}\end{matrix}\right.\)
- \(\left\{\begin{matrix}-2x+3y=\frac{111}{44}\\6x-y=\frac{-421}{44}\end{matrix}\right.\)
- \(\left\{\begin{matrix}3y=\frac{-163}{8}-2x\\-4x+y=\frac{-19}{4}\end{matrix}\right.\)
- \(\left\{\begin{matrix}-5x-4y=\frac{1151}{165}\\x=4y+\frac{-19}{165}\end{matrix}\right.\)
- \(\left\{\begin{matrix}5y=\frac{71}{12}+x\\6x-5y=\frac{-67}{4}\end{matrix}\right.\)
- \(\left\{\begin{matrix}6y=\frac{148}{13}-5x\\-5x+y=\frac{-57}{13}\end{matrix}\right.\)
- \(\left\{\begin{matrix}5y=\frac{225}{34}-x\\-2x-5y=\frac{-155}{17}\end{matrix}\right.\)
- \(\left\{\begin{matrix}3y=\frac{304}{77}+5x\\x-y=\frac{-8}{77}\end{matrix}\right.\)
- \(\left\{\begin{matrix}-4x+4y=\frac{-14}{13}\\-4x=-y+\frac{-62}{13}\end{matrix}\right.\)
- \(\left\{\begin{matrix}5x-3y=\frac{-139}{17}\\-5x=y+\frac{67}{17}\end{matrix}\right.\)
- \(\left\{\begin{matrix}3x-6y=\frac{387}{221}\\x=6y+\frac{673}{221}\end{matrix}\right.\)
Substitutie of combinatie
Verbetersleutel
- \(\left\{\begin{matrix}-x-4y=\frac{-43}{20}\\5x=3y+\frac{-81}{16}\end{matrix}\right.\qquad V=\{(\frac{-3}{5},\frac{11}{16})\}\)
- \(\left\{\begin{matrix}2x-y=\frac{-76}{15}\\-2x=3y+\frac{-28}{5}\end{matrix}\right.\qquad V=\{(\frac{-6}{5},\frac{8}{3})\}\)
- \(\left\{\begin{matrix}-2x+3y=\frac{111}{44}\\6x-y=\frac{-421}{44}\end{matrix}\right.\qquad V=\{(\frac{-18}{11},\frac{-1}{4})\}\)
- \(\left\{\begin{matrix}3y=\frac{-163}{8}-2x\\-4x+y=\frac{-19}{4}\end{matrix}\right.\qquad V=\{(\frac{-7}{16},\frac{-13}{2})\}\)
- \(\left\{\begin{matrix}-5x-4y=\frac{1151}{165}\\x=4y+\frac{-19}{165}\end{matrix}\right.\qquad V=\{(\frac{-13}{11},\frac{-4}{15})\}\)
- \(\left\{\begin{matrix}5y=\frac{71}{12}+x\\6x-5y=\frac{-67}{4}\end{matrix}\right.\qquad V=\{(\frac{-13}{6},\frac{3}{4})\}\)
- \(\left\{\begin{matrix}6y=\frac{148}{13}-5x\\-5x+y=\frac{-57}{13}\end{matrix}\right.\qquad V=\{(\frac{14}{13},1)\}\)
- \(\left\{\begin{matrix}5y=\frac{225}{34}-x\\-2x-5y=\frac{-155}{17}\end{matrix}\right.\qquad V=\{(\frac{5}{2},\frac{14}{17})\}\)
- \(\left\{\begin{matrix}3y=\frac{304}{77}+5x\\x-y=\frac{-8}{77}\end{matrix}\right.\qquad V=\{(\frac{-20}{11},\frac{-12}{7})\}\)
- \(\left\{\begin{matrix}-4x+4y=\frac{-14}{13}\\-4x=-y+\frac{-62}{13}\end{matrix}\right.\qquad V=\{(\frac{3}{2},\frac{16}{13})\}\)
- \(\left\{\begin{matrix}5x-3y=\frac{-139}{17}\\-5x=y+\frac{67}{17}\end{matrix}\right.\qquad V=\{(-1,\frac{18}{17})\}\)
- \(\left\{\begin{matrix}3x-6y=\frac{387}{221}\\x=6y+\frac{673}{221}\end{matrix}\right.\qquad V=\{(\frac{-11}{17},\frac{-8}{13})\}\)