Substitutie of combinatie
- \(\left\{\begin{matrix}-5y=\frac{109}{18}-4x\\x-y=\frac{25}{18}\end{matrix}\right.\)
- \(\left\{\begin{matrix}-6x+y=-3\\2x-6y=\frac{-12}{5}\end{matrix}\right.\)
- \(\left\{\begin{matrix}-4x-4y=\frac{1324}{285}\\x=-5y+\frac{-211}{285}\end{matrix}\right.\)
- \(\left\{\begin{matrix}5x-5y=\frac{249}{11}\\-x=-6y+\frac{-1019}{55}\end{matrix}\right.\)
- \(\left\{\begin{matrix}-3y=\frac{-138}{91}+x\\6x-5y=\frac{-1426}{91}\end{matrix}\right.\)
- \(\left\{\begin{matrix}4x+2y=\frac{109}{56}\\-x+y=\frac{-107}{112}\end{matrix}\right.\)
- \(\left\{\begin{matrix}-4x+2y=-12\\-6x+y=-20\end{matrix}\right.\)
- \(\left\{\begin{matrix}-3y=\frac{-13}{6}-4x\\-x+6y=\frac{101}{12}\end{matrix}\right.\)
- \(\left\{\begin{matrix}-2x-4y=\frac{286}{85}\\5x=y+\frac{-341}{85}\end{matrix}\right.\)
- \(\left\{\begin{matrix}5x+6y=\frac{278}{33}\\x=-y+\frac{239}{165}\end{matrix}\right.\)
- \(\left\{\begin{matrix}x+5y=-3\\3x=-2y+4\end{matrix}\right.\)
- \(\left\{\begin{matrix}x-6y=\frac{201}{65}\\-3x=-4y+\frac{-239}{65}\end{matrix}\right.\)
Substitutie of combinatie
Verbetersleutel
- \(\left\{\begin{matrix}-5y=\frac{109}{18}-4x\\x-y=\frac{25}{18}\end{matrix}\right.\qquad V=\{(\frac{8}{9},\frac{-1}{2})\}\)
- \(\left\{\begin{matrix}-6x+y=-3\\2x-6y=\frac{-12}{5}\end{matrix}\right.\qquad V=\{(\frac{3}{5},\frac{3}{5})\}\)
- \(\left\{\begin{matrix}-4x-4y=\frac{1324}{285}\\x=-5y+\frac{-211}{285}\end{matrix}\right.\qquad V=\{(\frac{-19}{15},\frac{2}{19})\}\)
- \(\left\{\begin{matrix}5x-5y=\frac{249}{11}\\-x=-6y+\frac{-1019}{55}\end{matrix}\right.\qquad V=\{(\frac{19}{11},\frac{-14}{5})\}\)
- \(\left\{\begin{matrix}-3y=\frac{-138}{91}+x\\6x-5y=\frac{-1426}{91}\end{matrix}\right.\qquad V=\{(\frac{-12}{7},\frac{14}{13})\}\)
- \(\left\{\begin{matrix}4x+2y=\frac{109}{56}\\-x+y=\frac{-107}{112}\end{matrix}\right.\qquad V=\{(\frac{9}{14},\frac{-5}{16})\}\)
- \(\left\{\begin{matrix}-4x+2y=-12\\-6x+y=-20\end{matrix}\right.\qquad V=\{(\frac{7}{2},1)\}\)
- \(\left\{\begin{matrix}-3y=\frac{-13}{6}-4x\\-x+6y=\frac{101}{12}\end{matrix}\right.\qquad V=\{(\frac{7}{12},\frac{3}{2})\}\)
- \(\left\{\begin{matrix}-2x-4y=\frac{286}{85}\\5x=y+\frac{-341}{85}\end{matrix}\right.\qquad V=\{(\frac{-15}{17},\frac{-2}{5})\}\)
- \(\left\{\begin{matrix}5x+6y=\frac{278}{33}\\x=-y+\frac{239}{165}\end{matrix}\right.\qquad V=\{(\frac{4}{15},\frac{13}{11})\}\)
- \(\left\{\begin{matrix}x+5y=-3\\3x=-2y+4\end{matrix}\right.\qquad V=\{(2,-1)\}\)
- \(\left\{\begin{matrix}x-6y=\frac{201}{65}\\-3x=-4y+\frac{-239}{65}\end{matrix}\right.\qquad V=\{(\frac{9}{13},\frac{-2}{5})\}\)