Ontbinden in factoren (2)

Hoofdmenu Eentje per keer 

Zonder de gemeenschappelijke factor af. Ontbind verder in factoren indien mogelijk.

  1. \(-b^{7}-8b^{6}-16b^{5}\)
  2. \(-98a^{15}-112a^{10}-32a^{5}\)
  3. \(-150a^{5}+96a^{3}\)
  4. \(-54p^{8}-144p^{6}-96p^{4}\)
  5. \(96x^{4}+240x^{3}+150x^{2}\)
  6. \(-6y^{5}+96y^{3}\)
  7. \(2b^{7}-36b^{6}+162b^{5}\)
  8. \(25x^{13}-40x^{9}+16x^{5}\)
  9. \(-80a^{19}+125a^{3}\)
  10. \(-180y^{6}+5y^{4}\)
  11. \(5a^{6}-40a^{5}+80a^{4}\)
  12. \(a^{7}-49a^{5}\)

Zonder de gemeenschappelijke factor af. Ontbind verder in factoren indien mogelijk.

Verbetersleutel

  1. \(-b^{7}-8b^{6}-16b^{5}=-b^{5}(b^2+8b+16)=-b^{5}(b+4)^2\)
  2. \(-98a^{15}-112a^{10}-32a^{5}=-2a^{5}(49a^{10}+56a^5+16)=-2a^{5}(7a^5+4)^2\)
  3. \(-150a^{5}+96a^{3}=-6a^{3}(25a^{2}-16)=-6a^{3}(5a+4)(5a-4)\)
  4. \(-54p^{8}-144p^{6}-96p^{4}=-6p^{4}(9p^{4}+24p^2+16)=-6p^{4}(3p^2+4)^2\)
  5. \(96x^{4}+240x^{3}+150x^{2}=6x^{2}(16x^{2}+40x+25)=6x^{2}(4x+5)^2\)
  6. \(-6y^{5}+96y^{3}=-6y^{3}(y^2-16)=-6y^{3}(y-4)(y+4)\)
  7. \(2b^{7}-36b^{6}+162b^{5}=2b^{5}(b^2-18b+81)=2b^{5}(b-9)^2\)
  8. \(25x^{13}-40x^{9}+16x^{5}=x^{5}(25x^{8}-40x^4+16)=x^{5}(5x^4-4)^2\)
  9. \(-80a^{19}+125a^{3}=-5a^{3}(16a^{16}-25)=-5a^{3}(4a^8+5)(4a^8-5)\)
  10. \(-180y^{6}+5y^{4}=-5y^{4}(36y^{2}-1)=-5y^{4}(6y+1)(6y-1)\)
  11. \(5a^{6}-40a^{5}+80a^{4}=5a^{4}(a^2-8a+16)=5a^{4}(a-4)^2\)
  12. \(a^{7}-49a^{5}=a^{5}(a^2-49)=a^{5}(a-7)(a+7)\)
Oefeningengenerator vanhoeckes.be/wiskunde 2025-04-03 05:24:14