Ontbind in factoren door gebruik te maken van merkwaardige producten
- \(81-256y^{10}\)
- \(25x^{10}-36\)
- \(49s^{4}+28s^2+4\)
- \(-16b^2+1\)
- \(100y^2-b^{6}\)
- \(a^2-36\)
- \(144b^{4}+24b^2p+1p^2\)
- \(64y^{4}+112y^2+49\)
- \(256a^{8}+288a^4s+81s^2\)
- \(16s^{6}+120s^3+225\)
- \(225a^{8}+390a^4x+169x^2\)
- \(q^2-9\)
Ontbind in factoren door gebruik te maken van merkwaardige producten
Verbetersleutel
- \(81-256y^{10}=(9-16y^5)(9+16y^5)\)
- \(25x^{10}-36=(5x^5+6)(5x^5-6)\)
- \(49s^{4}+28s^2+4=(7s^2+2)^2\)
- \(-16b^2+1=(1-4b)(1+4b)\)
- \(100y^2-b^{6}=(10y-b^3)(10y+b^3)\)
- \(a^2-36=(a-6)(a+6)\)
- \(144b^{4}+24b^2p+1p^2=(12b^2+p)^2\)
- \(64y^{4}+112y^2+49=(8y^2+7)^2\)
- \(256a^{8}+288a^4s+81s^2=(16a^4+9s)^2\)
- \(16s^{6}+120s^3+225=(4s^3+15)^2\)
- \(225a^{8}+390a^4x+169x^2=(15a^4+13x)^2\)
- \(q^2-9=(q-3)(q+3)\)