Ontbind in factoren door gebruik te maken van merkwaardige producten
- \(4-169s^{6}\)
- \(169s^2-16q^{8}\)
- \(9q^2-66q+121\)
- \(121x^2-144a^{8}\)
- \(121y^{4}+352y^2+256\)
- \(196b^2-364b+169\)
- \(81b^2+198b+121\)
- \(225a^2+120a+16\)
- \(x^2+20x+100\)
- \(4-9x^{12}\)
- \(169a^{6}+234a^3+81\)
- \(100p^{4}+20p^2y+1y^2\)
Ontbind in factoren door gebruik te maken van merkwaardige producten
Verbetersleutel
- \(4-169s^{6}=(2-13s^3)(2+13s^3)\)
- \(169s^2-16q^{8}=(13s-4q^4)(13s+4q^4)\)
- \(9q^2-66q+121=(3q-11)^2\)
- \(121x^2-144a^{8}=(11x-12a^4)(11x+12a^4)\)
- \(121y^{4}+352y^2+256=(11y^2+16)^2\)
- \(196b^2-364b+169=(14b-13)^2\)
- \(81b^2+198b+121=(9b+11)^2\)
- \(225a^2+120a+16=(15a+4)^2\)
- \(x^2+20x+100=(x+10)^2\)
- \(4-9x^{12}=(2-3x^6)(2+3x^6)\)
- \(169a^{6}+234a^3+81=(13a^3+9)^2\)
- \(100p^{4}+20p^2y+1y^2=(10p^2+y)^2\)