Bereken de volgende merkwaardige producten
- \((-13p^3-14)(-13p^3-14)\)
- \((2y^4-4)(2y^4+4)\)
- \((-9y^5+4)(-9y^5-4)\)
- \((-4y-8)(4y-8)\)
- \((-13p^3-6)(13p^3-6)\)
- \((10y^2+9p)(10y^2+9p)\)
- \((p-15)(p+15)\)
- \((13b^2+13)(13b^2-13)\)
- \((x-12)(x+12)\)
- \((s-14)^2\)
- \((-3b^4-9)^2\)
- \((q-11)^2\)
Bereken de volgende merkwaardige producten
Verbetersleutel
- \((-13p^3-14)(-13p^3-14)=(-13p^3-14)^2=(-13p^3)^2\color{magenta}{+2.(-13p^3).(-14)}+(-14)^2=169p^{6}\color{magenta}{+364p^3}+196\)
- \((\color{blue}{2y^4}\color{red}{-4})(\color{blue}{2y^4}\color{red}{+4})=\color{blue}{(2y^4)}^2-\color{red}{(-4)}^2=4y^{8}-16\)
- \((\color{blue}{-9y^5}\color{red}{+4})(\color{blue}{-9y^5}\color{red}{-4})=\color{blue}{(-9y^5)}^2-\color{red}{4}^2=81y^{10}-16\)
- \((\color{red}{-4y}\color{blue}{-8})(\color{red}{4y}\color{blue}{-8})=\color{blue}{(-8)}^2-\color{red}{(4y)}^2=64-16y^2\)
- \((\color{red}{-13p^3}\color{blue}{-6})(\color{red}{13p^3}\color{blue}{-6})=\color{blue}{(-6)}^2-\color{red}{(13p^3)}^2=36-169p^{6}\)
- \((10y^2+9p)(10y^2+9p)=(10y^2+9p)^2=(10y^2)^2\color{magenta}{+2.(10y^2).(9p)}+(9p)^2=100y^{4}\color{magenta}{+180py^2}+81p^2\)
- \((\color{blue}{p}\color{red}{-15})(\color{blue}{p}\color{red}{+15})=\color{blue}{(p)}^2-\color{red}{(-15)}^2=p^2-225\)
- \((\color{blue}{13b^2}\color{red}{+13})(\color{blue}{13b^2}\color{red}{-13})=\color{blue}{(13b^2)}^2-\color{red}{13}^2=169b^{4}-169\)
- \((\color{blue}{x}\color{red}{-12})(\color{blue}{x}\color{red}{+12})=\color{blue}{x}^2-\color{red}{12}^2=x^2-144\)
- \((s-14)^2=s^2+\color{magenta}{2.s.(-14)}+(-14)^2=s^2\color{magenta}{-28s}+196\)
- \((-3b^4-9)^2=(-3b^4)^2\color{magenta}{+2.(-3b^4).(-9)}+(-9)^2=9b^{8}\color{magenta}{+54b^4}+81\)
- \((q-11)^2=q^2+\color{magenta}{2.q.(-11)}+(-11)^2=q^2\color{magenta}{-22q}+121\)