Zet om naar een positieve exponent
- \(\left(\frac{-15}{7}\right)^{-3}\)
- \(-\left(\frac{-14}{3}\right)^{-1}\)
- \(\left(\frac{-20}{9}\right)^{-2}\)
- \(-\left(\frac{-14}{5}\right)^{-1}\)
- \(\left(\frac{-18}{5}\right)^{-2}\)
- \(\left(\frac{-10}{3}\right)^{-2}\)
- \(-\left(\frac{-16}{5}\right)^{-4}\)
- \(-\left(\frac{-5}{3}\right)^{-4}\)
- \(\left(\frac{-9}{2}\right)^{-3}\)
- \(\left(\frac{-9}{5}\right)^{-2}\)
- \(-\left(\frac{-6}{5}\right)^{-1}\)
- \(\left(\frac{-3}{8}\right)^{-4}\)
Zet om naar een positieve exponent
Verbetersleutel
- \(\left(\frac{-15}{7}\right)^{-3}=\left(-\frac{7}{15}\right)^{3}=- \frac{7^{3}}{15^{3}}=\ldots \text{ZRM}\)
- \(-\left(\frac{-14}{3}\right)^{-1}=-\left(-\frac{3}{14}\right)^{1}= \frac{3^{1}}{14^{1}}= \frac{3}{14}\)
- \(\left(\frac{-20}{9}\right)^{-2}=\left(-\frac{9}{20}\right)^{2}= \frac{9^{2}}{20^{2}}= \frac{81}{400}\)
- \(-\left(\frac{-14}{5}\right)^{-1}=-\left(-\frac{5}{14}\right)^{1}= \frac{5^{1}}{14^{1}}= \frac{5}{14}\)
- \(\left(\frac{-18}{5}\right)^{-2}=\left(-\frac{5}{18}\right)^{2}= \frac{5^{2}}{18^{2}}= \frac{25}{324}\)
- \(\left(\frac{-10}{3}\right)^{-2}=\left(-\frac{3}{10}\right)^{2}= \frac{3^{2}}{10^{2}}= \frac{9}{100}\)
- \(-\left(\frac{-16}{5}\right)^{-4}=-\left(-\frac{5}{16}\right)^{4}=- \frac{5^{4}}{16^{4}}=\ldots \text{ZRM}\)
- \(-\left(\frac{-5}{3}\right)^{-4}=-\left(-\frac{3}{5}\right)^{4}=- \frac{3^{4}}{5^{4}}=\ldots \text{ZRM}\)
- \(\left(\frac{-9}{2}\right)^{-3}=\left(-\frac{2}{9}\right)^{3}=- \frac{2^{3}}{9^{3}}=\ldots \text{ZRM}\)
- \(\left(\frac{-9}{5}\right)^{-2}=\left(-\frac{5}{9}\right)^{2}= \frac{5^{2}}{9^{2}}= \frac{25}{81}\)
- \(-\left(\frac{-6}{5}\right)^{-1}=-\left(-\frac{5}{6}\right)^{1}= \frac{5^{1}}{6^{1}}= \frac{5}{6}\)
- \(\left(\frac{-3}{8}\right)^{-4}=\left(-\frac{8}{3}\right)^{4}= \frac{8^{4}}{3^{4}}=\ldots \text{ZRM}\)