Negatieve exponent (reeks 2)

Hoofdmenu Eentje per keer 

Zet om naar een positieve exponent

  1. \(\left(\frac{-15}{7}\right)^{-3}\)
  2. \(-\left(\frac{-14}{3}\right)^{-1}\)
  3. \(\left(\frac{-20}{9}\right)^{-2}\)
  4. \(-\left(\frac{-14}{5}\right)^{-1}\)
  5. \(\left(\frac{-18}{5}\right)^{-2}\)
  6. \(\left(\frac{-10}{3}\right)^{-2}\)
  7. \(-\left(\frac{-16}{5}\right)^{-4}\)
  8. \(-\left(\frac{-5}{3}\right)^{-4}\)
  9. \(\left(\frac{-9}{2}\right)^{-3}\)
  10. \(\left(\frac{-9}{5}\right)^{-2}\)
  11. \(-\left(\frac{-6}{5}\right)^{-1}\)
  12. \(\left(\frac{-3}{8}\right)^{-4}\)

Zet om naar een positieve exponent

Verbetersleutel

  1. \(\left(\frac{-15}{7}\right)^{-3}=\left(-\frac{7}{15}\right)^{3}=- \frac{7^{3}}{15^{3}}=\ldots \text{ZRM}\)
  2. \(-\left(\frac{-14}{3}\right)^{-1}=-\left(-\frac{3}{14}\right)^{1}= \frac{3^{1}}{14^{1}}= \frac{3}{14}\)
  3. \(\left(\frac{-20}{9}\right)^{-2}=\left(-\frac{9}{20}\right)^{2}= \frac{9^{2}}{20^{2}}= \frac{81}{400}\)
  4. \(-\left(\frac{-14}{5}\right)^{-1}=-\left(-\frac{5}{14}\right)^{1}= \frac{5^{1}}{14^{1}}= \frac{5}{14}\)
  5. \(\left(\frac{-18}{5}\right)^{-2}=\left(-\frac{5}{18}\right)^{2}= \frac{5^{2}}{18^{2}}= \frac{25}{324}\)
  6. \(\left(\frac{-10}{3}\right)^{-2}=\left(-\frac{3}{10}\right)^{2}= \frac{3^{2}}{10^{2}}= \frac{9}{100}\)
  7. \(-\left(\frac{-16}{5}\right)^{-4}=-\left(-\frac{5}{16}\right)^{4}=- \frac{5^{4}}{16^{4}}=\ldots \text{ZRM}\)
  8. \(-\left(\frac{-5}{3}\right)^{-4}=-\left(-\frac{3}{5}\right)^{4}=- \frac{3^{4}}{5^{4}}=\ldots \text{ZRM}\)
  9. \(\left(\frac{-9}{2}\right)^{-3}=\left(-\frac{2}{9}\right)^{3}=- \frac{2^{3}}{9^{3}}=\ldots \text{ZRM}\)
  10. \(\left(\frac{-9}{5}\right)^{-2}=\left(-\frac{5}{9}\right)^{2}= \frac{5^{2}}{9^{2}}= \frac{25}{81}\)
  11. \(-\left(\frac{-6}{5}\right)^{-1}=-\left(-\frac{5}{6}\right)^{1}= \frac{5^{1}}{6^{1}}= \frac{5}{6}\)
  12. \(\left(\frac{-3}{8}\right)^{-4}=\left(-\frac{8}{3}\right)^{4}= \frac{8^{4}}{3^{4}}=\ldots \text{ZRM}\)
Oefeningengenerator vanhoeckes.be/wiskunde 2024-11-21 12:54:43