Negatieve exponent (reeks 2)

Hoofdmenu Eentje per keer 

Zet om naar een positieve exponent

  1. \(\left(\frac{-20}{3}\right)^{-1}\)
  2. \(\left(\frac{-3}{10}\right)^{-4}\)
  3. \(\left(\frac{-4}{9}\right)^{-1}\)
  4. \(\left(\frac{-9}{2}\right)^{-1}\)
  5. \(-\left(\frac{-6}{5}\right)^{-4}\)
  6. \(\left(\frac{-6}{5}\right)^{-1}\)
  7. \(\left(\frac{-10}{7}\right)^{-1}\)
  8. \(\left(\frac{-16}{5}\right)^{-3}\)
  9. \(\left(\frac{-16}{3}\right)^{-1}\)
  10. \(\left(\frac{-11}{9}\right)^{-4}\)
  11. \(\left(\frac{-14}{9}\right)^{-4}\)
  12. \(\left(\frac{-3}{7}\right)^{-4}\)

Zet om naar een positieve exponent

Verbetersleutel

  1. \(\left(\frac{-20}{3}\right)^{-1}=\left(-\frac{3}{20}\right)^{1}=- \frac{3^{1}}{20^{1}}=- \frac{3}{20}\)
  2. \(\left(\frac{-3}{10}\right)^{-4}=\left(-\frac{10}{3}\right)^{4}= \frac{10^{4}}{3^{4}}=\ldots \text{ZRM}\)
  3. \(\left(\frac{-4}{9}\right)^{-1}=\left(-\frac{9}{4}\right)^{1}=- \frac{9^{1}}{4^{1}}=- \frac{9}{4}\)
  4. \(\left(\frac{-9}{2}\right)^{-1}=\left(-\frac{2}{9}\right)^{1}=- \frac{2^{1}}{9^{1}}=- \frac{2}{9}\)
  5. \(-\left(\frac{-6}{5}\right)^{-4}=-\left(-\frac{5}{6}\right)^{4}=- \frac{5^{4}}{6^{4}}=\ldots \text{ZRM}\)
  6. \(\left(\frac{-6}{5}\right)^{-1}=\left(-\frac{5}{6}\right)^{1}=- \frac{5^{1}}{6^{1}}=- \frac{5}{6}\)
  7. \(\left(\frac{-10}{7}\right)^{-1}=\left(-\frac{7}{10}\right)^{1}=- \frac{7^{1}}{10^{1}}=- \frac{7}{10}\)
  8. \(\left(\frac{-16}{5}\right)^{-3}=\left(-\frac{5}{16}\right)^{3}=- \frac{5^{3}}{16^{3}}=\ldots \text{ZRM}\)
  9. \(\left(\frac{-16}{3}\right)^{-1}=\left(-\frac{3}{16}\right)^{1}=- \frac{3^{1}}{16^{1}}=- \frac{3}{16}\)
  10. \(\left(\frac{-11}{9}\right)^{-4}=\left(-\frac{9}{11}\right)^{4}= \frac{9^{4}}{11^{4}}=\ldots \text{ZRM}\)
  11. \(\left(\frac{-14}{9}\right)^{-4}=\left(-\frac{9}{14}\right)^{4}= \frac{9^{4}}{14^{4}}=\ldots \text{ZRM}\)
  12. \(\left(\frac{-3}{7}\right)^{-4}=\left(-\frac{7}{3}\right)^{4}= \frac{7^{4}}{3^{4}}=\ldots \text{ZRM}\)
Oefeningengenerator vanhoeckes.be/wiskunde 2025-04-03 05:12:33