Zet om naar een positieve exponent
- \(-\left(\frac{-2}{7}\right)^{-1}\)
- \(\left(\frac{-7}{10}\right)^{-3}\)
- \(-\left(\frac{-9}{2}\right)^{-2}\)
- \(\left(\frac{-15}{7}\right)^{-1}\)
- \(\left(\frac{-3}{2}\right)^{-1}\)
- \(-\left(\frac{-13}{8}\right)^{-2}\)
- \(-\left(\frac{-15}{8}\right)^{-3}\)
- \(-\left(\frac{-19}{9}\right)^{-4}\)
- \(-\left(\frac{-19}{2}\right)^{-3}\)
- \(\left(\frac{-7}{9}\right)^{-3}\)
- \(\left(\frac{-20}{3}\right)^{-4}\)
- \(-\left(\frac{-10}{9}\right)^{-1}\)
Zet om naar een positieve exponent
Verbetersleutel
- \(-\left(\frac{-2}{7}\right)^{-1}=-\left(-\frac{7}{2}\right)^{1}= \frac{7^{1}}{2^{1}}= \frac{7}{2}\)
- \(\left(\frac{-7}{10}\right)^{-3}=\left(-\frac{10}{7}\right)^{3}=- \frac{10^{3}}{7^{3}}=\ldots \text{ZRM}\)
- \(-\left(\frac{-9}{2}\right)^{-2}=-\left(-\frac{2}{9}\right)^{2}=- \frac{2^{2}}{9^{2}}=- \frac{4}{81}\)
- \(\left(\frac{-15}{7}\right)^{-1}=\left(-\frac{7}{15}\right)^{1}=- \frac{7^{1}}{15^{1}}=- \frac{7}{15}\)
- \(\left(\frac{-3}{2}\right)^{-1}=\left(-\frac{2}{3}\right)^{1}=- \frac{2^{1}}{3^{1}}=- \frac{2}{3}\)
- \(-\left(\frac{-13}{8}\right)^{-2}=-\left(-\frac{8}{13}\right)^{2}=- \frac{8^{2}}{13^{2}}=- \frac{64}{169}\)
- \(-\left(\frac{-15}{8}\right)^{-3}=-\left(-\frac{8}{15}\right)^{3}= \frac{8^{3}}{15^{3}}=\ldots \text{ZRM}\)
- \(-\left(\frac{-19}{9}\right)^{-4}=-\left(-\frac{9}{19}\right)^{4}=- \frac{9^{4}}{19^{4}}=\ldots \text{ZRM}\)
- \(-\left(\frac{-19}{2}\right)^{-3}=-\left(-\frac{2}{19}\right)^{3}= \frac{2^{3}}{19^{3}}=\ldots \text{ZRM}\)
- \(\left(\frac{-7}{9}\right)^{-3}=\left(-\frac{9}{7}\right)^{3}=- \frac{9^{3}}{7^{3}}=\ldots \text{ZRM}\)
- \(\left(\frac{-20}{3}\right)^{-4}=\left(-\frac{3}{20}\right)^{4}= \frac{3^{4}}{20^{4}}=\ldots \text{ZRM}\)
- \(-\left(\frac{-10}{9}\right)^{-1}=-\left(-\frac{9}{10}\right)^{1}= \frac{9^{1}}{10^{1}}= \frac{9}{10}\)