Bepaal x
- \(\log x = \frac{-1}{2}\)
- \(\log x = -1\)
- \(\log x = 0\)
- \(\log x = -2\)
- \(\log x = 5\)
- \(\log x = -7\)
- \(\log x = \frac{3}{4}\)
- \(\log x = \frac{-5}{4}\)
- \(\log x = -9\)
- \(\log x = -3\)
- \(\log x = \frac{-4}{3}\)
- \(\log x = -6\)
Bepaal x
Verbetersleutel
- \(\log x = \frac{-1}{2}\\ \Leftrightarrow x =\log 10^{\frac{-1}{2}}\\ \Leftrightarrow x = \sqrt{ \frac{1}{10^{1}} } \)
- \(\log x = -1\\ \Leftrightarrow x = \log 10^{-1} \\ \Leftrightarrow x = \frac{1}{10^{1}}\)
- \(\log x = 0\\ \Leftrightarrow x = 10^{0} \\ \Leftrightarrow x =1\)
- \(\log x = -2\\ \Leftrightarrow x = 10^{-2} \\ \Leftrightarrow x =0,01\)
- \(\log x = 5\\ \Leftrightarrow x = 10^{5} \\ \Leftrightarrow x =100000\)
- \(\log x = -7\\ \Leftrightarrow x = \log 10^{-7} \\ \Leftrightarrow x = \frac{1}{10^{7}}\)
- \(\log x = \frac{3}{4}\\ \Leftrightarrow x =\log 10^{\frac{3}{4}}\\ \Leftrightarrow x =\sqrt[4]{ 10^{3} }\)
- \(\log x = \frac{-5}{4}\\ \Leftrightarrow x =\log 10^{\frac{-5}{4}}\\ \Leftrightarrow x =\sqrt[4]{ \frac{1}{10^{5}} }\)
- \(\log x = -9\\ \Leftrightarrow x = \log 10^{-9} \\ \Leftrightarrow x = \frac{1}{10^{9}}\)
- \(\log x = -3\\ \Leftrightarrow x = 10^{-3} \\ \Leftrightarrow x =0,001\)
- \(\log x = \frac{-4}{3}\\ \Leftrightarrow x =\log 10^{\frac{-4}{3}}\\ \Leftrightarrow x =\sqrt[3]{ \frac{1}{10^{4}} }\)
- \(\log x = -6\\ \Leftrightarrow x = \log 10^{-6} \\ \Leftrightarrow x = \frac{1}{10^{6}}\)