Bepaal x
- \(\log x = -7\)
- \(\log x = -6\)
- \(\log x = 7\)
- \(\log x = \frac{-1}{3}\)
- \(\log x = -1\)
- \(\log x = \frac{-2}{7}\)
- \(\log x = 2\)
- \(\log x = \frac{5}{4}\)
- \(\log x = 0\)
- \(\log x = \frac{-11}{7}\)
- \(\log x = \frac{-3}{2}\)
- \(\log x = 6\)
Bepaal x
Verbetersleutel
- \(\log x = -7\\ \Leftrightarrow x = \log 10^{-7} \\ \Leftrightarrow x = \frac{1}{10^{7}}\)
- \(\log x = -6\\ \Leftrightarrow x = \log 10^{-6} \\ \Leftrightarrow x = \frac{1}{10^{6}}\)
- \(\log x = 7\\ \Leftrightarrow x = 10^{7} \\ \Leftrightarrow x =10000000\)
- \(\log x = \frac{-1}{3}\\ \Leftrightarrow x =\log 10^{\frac{-1}{3}}\\ \Leftrightarrow x =\sqrt[3]{ \frac{1}{10^{1}} }\)
- \(\log x = -1\\ \Leftrightarrow x = \log 10^{-1} \\ \Leftrightarrow x = \frac{1}{10^{1}}\)
- \(\log x = \frac{-2}{7}\\ \Leftrightarrow x =\log 10^{\frac{-2}{7}}\\ \Leftrightarrow x =\sqrt[7]{ \frac{1}{10^{2}} }\)
- \(\log x = 2\\ \Leftrightarrow x = 10^{2} \\ \Leftrightarrow x =100\)
- \(\log x = \frac{5}{4}\\ \Leftrightarrow x =\log 10^{\frac{5}{4}}\\ \Leftrightarrow x =\sqrt[4]{ 10^{5} }\)
- \(\log x = 0\\ \Leftrightarrow x = 10^{0} \\ \Leftrightarrow x =1\)
- \(\log x = \frac{-11}{7}\\ \Leftrightarrow x =\log 10^{\frac{-11}{7}}\\ \Leftrightarrow x =\sqrt[7]{ \frac{1}{10^{11}} }\)
- \(\log x = \frac{-3}{2}\\ \Leftrightarrow x =\log 10^{\frac{-3}{2}}\\ \Leftrightarrow x = \sqrt{ \frac{1}{10^{3}} } \)
- \(\log x = 6\\ \Leftrightarrow x = 10^{6} \\ \Leftrightarrow x =1000000\)