Bepaal x
- \(\log x = 9\)
- \(\log x = 8\)
- \(\log x = 4\)
- \(\log x = -8\)
- \(\log x = 1\)
- \(\log x = \frac{3}{10}\)
- \(\log x = 7\)
- \(\log x = 3\)
- \(\log x = \frac{3}{5}\)
- \(\log x = 6\)
- \(\log x = 2\)
- \(\log x = \frac{-1}{12}\)
Bepaal x
Verbetersleutel
- \(\log x = 9\\ \Leftrightarrow x = 10^{9} \\ \Leftrightarrow x =1000000000\)
- \(\log x = 8\\ \Leftrightarrow x = 10^{8} \\ \Leftrightarrow x =100000000\)
- \(\log x = 4\\ \Leftrightarrow x = 10^{4} \\ \Leftrightarrow x =10000\)
- \(\log x = -8\\ \Leftrightarrow x = \log 10^{-8} \\ \Leftrightarrow x = \frac{1}{10^{8}}\)
- \(\log x = 1\\ \Leftrightarrow x = 10^{1} \\ \Leftrightarrow x =10\)
- \(\log x = \frac{3}{10}\\ \Leftrightarrow x =\log 10^{\frac{3}{10}}\\ \Leftrightarrow x =\sqrt[10]{ 10^{3} }\)
- \(\log x = 7\\ \Leftrightarrow x = 10^{7} \\ \Leftrightarrow x =10000000\)
- \(\log x = 3\\ \Leftrightarrow x = 10^{3} \\ \Leftrightarrow x =1000\)
- \(\log x = \frac{3}{5}\\ \Leftrightarrow x =\log 10^{\frac{3}{5}}\\ \Leftrightarrow x =\sqrt[5]{ 10^{3} }\)
- \(\log x = 6\\ \Leftrightarrow x = 10^{6} \\ \Leftrightarrow x =1000000\)
- \(\log x = 2\\ \Leftrightarrow x = 10^{2} \\ \Leftrightarrow x =100\)
- \(\log x = \frac{-1}{12}\\ \Leftrightarrow x =\log 10^{\frac{-1}{12}}\\ \Leftrightarrow x =\sqrt[12]{ \frac{1}{10^{1}} }\)