Rekenen met log10 (reeks 2)

Hoofdmenu Eentje per keer 

Bepaal x

  1. \(\log x = \frac{-1}{2}\)
  2. \(\log x = -1\)
  3. \(\log x = 0\)
  4. \(\log x = -2\)
  5. \(\log x = 5\)
  6. \(\log x = -7\)
  7. \(\log x = \frac{3}{4}\)
  8. \(\log x = \frac{-5}{4}\)
  9. \(\log x = -9\)
  10. \(\log x = -3\)
  11. \(\log x = \frac{-4}{3}\)
  12. \(\log x = -6\)

Bepaal x

Verbetersleutel

  1. \(\log x = \frac{-1}{2}\\ \Leftrightarrow x =\log 10^{\frac{-1}{2}}\\ \Leftrightarrow x = \sqrt{ \frac{1}{10^{1}} } \)
  2. \(\log x = -1\\ \Leftrightarrow x = \log 10^{-1} \\ \Leftrightarrow x = \frac{1}{10^{1}}\)
  3. \(\log x = 0\\ \Leftrightarrow x = 10^{0} \\ \Leftrightarrow x =1\)
  4. \(\log x = -2\\ \Leftrightarrow x = 10^{-2} \\ \Leftrightarrow x =0,01\)
  5. \(\log x = 5\\ \Leftrightarrow x = 10^{5} \\ \Leftrightarrow x =100000\)
  6. \(\log x = -7\\ \Leftrightarrow x = \log 10^{-7} \\ \Leftrightarrow x = \frac{1}{10^{7}}\)
  7. \(\log x = \frac{3}{4}\\ \Leftrightarrow x =\log 10^{\frac{3}{4}}\\ \Leftrightarrow x =\sqrt[4]{ 10^{3} }\)
  8. \(\log x = \frac{-5}{4}\\ \Leftrightarrow x =\log 10^{\frac{-5}{4}}\\ \Leftrightarrow x =\sqrt[4]{ \frac{1}{10^{5}} }\)
  9. \(\log x = -9\\ \Leftrightarrow x = \log 10^{-9} \\ \Leftrightarrow x = \frac{1}{10^{9}}\)
  10. \(\log x = -3\\ \Leftrightarrow x = 10^{-3} \\ \Leftrightarrow x =0,001\)
  11. \(\log x = \frac{-4}{3}\\ \Leftrightarrow x =\log 10^{\frac{-4}{3}}\\ \Leftrightarrow x =\sqrt[3]{ \frac{1}{10^{4}} }\)
  12. \(\log x = -6\\ \Leftrightarrow x = \log 10^{-6} \\ \Leftrightarrow x = \frac{1}{10^{6}}\)
Oefeningengenerator vanhoeckes.be/wiskunde 2024-12-03 18:10:57