Bereken de getalwaarde
- \(4a^2-4b\text{ [met a = -1 en b = -5]}\)
- \(8a-7b\text{ [met a = -2 en b = -4]}\)
- \(9a+2b\text{ [met a = 2 en b = -3]}\)
- \(5a^2+5b\text{ [met a = -1 en b = 6]}\)
- \(ab-5b-15\text{ [met a = 3 en b = -1]}\)
- \(2a^2-b\text{ [met a = 1 en b = 3]}\)
- \(3a-2b\text{ [met a = -1 en b = 1]}\)
- \(a^2+5b\text{ [met a = 2 en b = 3]}\)
- \(a^2-5b\text{ [met a = -5 en b = -5]}\)
- \(a+2b\text{ [met a = 3 en b = 3]}\)
- \(3a^2-4b\text{ [met a = 2 en b = -5]}\)
- \(5a^2+3b\text{ [met a = -5 en b = -2]}\)
Bereken de getalwaarde
Verbetersleutel
- \(\begin{align} 4a^2-4b&=4.a^2-4.b \text{ [met a = -1 en b = -5]}\\&=4.(-1)^2-4.(-5)\\&=24\\ \end{align}\)
- \(\begin{align} 8a-7b&=8.a-7.b \text{ [met a = -2 en b = -4]}\\&=8.(-2)-7.(-4)\\&=12\\ \end{align}\)
- \(\begin{align} 9a+2b&=9.a+2.b \text{ [met a = 2 en b = -3]}\\&=9.2+2.(-3)\\&=12\\ \end{align}\)
- \(\begin{align} 5a^2+5b&=5.a^2+5.b \text{ [met a = -1 en b = 6]}\\&=5.(-1)^2+5.6\\&=35\\ \end{align}\)
- \(\begin{align} ab-5b-15&=1.a.b-5.b-15 \text{ [met a = 3 en b = -1]}\\&=1.3.(-1)-5.(-1)-15\\&=-13\\ \end{align}\)
- \(\begin{align} 2a^2-b&=2.a^2-1.b \text{ [met a = 1 en b = 3]}\\&=2.1^2-1.3\\&=-1\\ \end{align}\)
- \(\begin{align} 3a-2b&=3.a-2.b \text{ [met a = -1 en b = 1]}\\&=3.(-1)-2.1\\&=-5\\ \end{align}\)
- \(\begin{align} a^2+5b&=1.a^2+5.b \text{ [met a = 2 en b = 3]}\\&=1.2^2+5.3\\&=19\\ \end{align}\)
- \(\begin{align} a^2-5b&=1.a^2-5.b \text{ [met a = -5 en b = -5]}\\&=1.(-5)^2-5.(-5)\\&=50\\ \end{align}\)
- \(\begin{align} a+2b&=1.a+2.b \text{ [met a = 3 en b = 3]}\\&=1.3+2.3\\&=9\\ \end{align}\)
- \(\begin{align} 3a^2-4b&=3.a^2-4.b \text{ [met a = 2 en b = -5]}\\&=3.2^2-4.(-5)\\&=32\\ \end{align}\)
- \(\begin{align} 5a^2+3b&=5.a^2+3.b \text{ [met a = -5 en b = -2]}\\&=5.(-5)^2+3.(-2)\\&=119\\ \end{align}\)