Maak de noemer wortelvrij
- \(\frac{25}{\sqrt{2}}\)
- \(\frac{8}{\sqrt{13}}\)
- \(\frac{15}{\sqrt{15}}\)
- \(\frac{5}{\sqrt{19}}\)
- \(\frac{54}{\sqrt{19}}\)
- \(\frac{50}{\sqrt{7}}\)
- \(\frac{59}{\sqrt{8}}\)
- \(\frac{37}{\sqrt{5}}\)
- \(\frac{22}{\sqrt{14}}\)
- \(\frac{14}{\sqrt{17}}\)
- \(\frac{59}{\sqrt{5}}\)
- \(\frac{14}{\sqrt{13}}\)
Maak de noemer wortelvrij
Verbetersleutel
- \(\frac{25}{\sqrt{2}}=\frac{25\cdot \color{red}{\sqrt{2}} }{\sqrt{2}\cdot \color{red}{\sqrt{2}} }=\frac{25\cdot\sqrt{2}}{2}\)
- \(\frac{8}{\sqrt{13}}=\frac{8\cdot \color{red}{\sqrt{13}} }{\sqrt{13}\cdot \color{red}{\sqrt{13}} }=\frac{8\cdot\sqrt{13}}{13}\)
- \(\frac{15}{\sqrt{15}}=\frac{15\cdot \color{red}{\sqrt{15}} }{\sqrt{15}\cdot \color{red}{\sqrt{15}} }=\frac{15\cdot\sqrt{15}}{15}=\frac{\sqrt{15}}{1}\)
- \(\frac{5}{\sqrt{19}}=\frac{5\cdot \color{red}{\sqrt{19}} }{\sqrt{19}\cdot \color{red}{\sqrt{19}} }=\frac{5\cdot\sqrt{19}}{19}\)
- \(\frac{54}{\sqrt{19}}=\frac{54\cdot \color{red}{\sqrt{19}} }{\sqrt{19}\cdot \color{red}{\sqrt{19}} }=\frac{54\cdot\sqrt{19}}{19}\)
- \(\frac{50}{\sqrt{7}}=\frac{50\cdot \color{red}{\sqrt{7}} }{\sqrt{7}\cdot \color{red}{\sqrt{7}} }=\frac{50\cdot\sqrt{7}}{7}\)
- \(\frac{59}{\sqrt{8}}=\frac{59\cdot \color{red}{\sqrt{8}} }{\sqrt{8}\cdot \color{red}{\sqrt{8}} }=\frac{59\cdot\sqrt{8}}{8}\)
- \(\frac{37}{\sqrt{5}}=\frac{37\cdot \color{red}{\sqrt{5}} }{\sqrt{5}\cdot \color{red}{\sqrt{5}} }=\frac{37\cdot\sqrt{5}}{5}\)
- \(\frac{22}{\sqrt{14}}=\frac{22\cdot \color{red}{\sqrt{14}} }{\sqrt{14}\cdot \color{red}{\sqrt{14}} }=\frac{22\cdot\sqrt{14}}{14}=\frac{11\cdot\sqrt{14}}{7}\)
- \(\frac{14}{\sqrt{17}}=\frac{14\cdot \color{red}{\sqrt{17}} }{\sqrt{17}\cdot \color{red}{\sqrt{17}} }=\frac{14\cdot\sqrt{17}}{17}\)
- \(\frac{59}{\sqrt{5}}=\frac{59\cdot \color{red}{\sqrt{5}} }{\sqrt{5}\cdot \color{red}{\sqrt{5}} }=\frac{59\cdot\sqrt{5}}{5}\)
- \(\frac{14}{\sqrt{13}}=\frac{14\cdot \color{red}{\sqrt{13}} }{\sqrt{13}\cdot \color{red}{\sqrt{13}} }=\frac{14\cdot\sqrt{13}}{13}\)