Maak de noemer wortelvrij
- \(\frac{6}{\sqrt{10}}\)
- \(\frac{57}{\sqrt{10}}\)
- \(\frac{4}{\sqrt{2}}\)
- \(\frac{30}{\sqrt{10}}\)
- \(\frac{59}{\sqrt{8}}\)
- \(\frac{20}{\sqrt{19}}\)
- \(\frac{55}{\sqrt{2}}\)
- \(\frac{21}{\sqrt{17}}\)
- \(\frac{51}{\sqrt{8}}\)
- \(\frac{10}{\sqrt{10}}\)
- \(\frac{42}{\sqrt{6}}\)
- \(\frac{35}{\sqrt{2}}\)
Maak de noemer wortelvrij
Verbetersleutel
- \(\frac{6}{\sqrt{10}}=\frac{6\cdot \color{red}{\sqrt{10}} }{\sqrt{10}\cdot \color{red}{\sqrt{10}} }=\frac{6\cdot\sqrt{10}}{10}=\frac{3\cdot\sqrt{10}}{5}\)
- \(\frac{57}{\sqrt{10}}=\frac{57\cdot \color{red}{\sqrt{10}} }{\sqrt{10}\cdot \color{red}{\sqrt{10}} }=\frac{57\cdot\sqrt{10}}{10}\)
- \(\frac{4}{\sqrt{2}}=\frac{4\cdot \color{red}{\sqrt{2}} }{\sqrt{2}\cdot \color{red}{\sqrt{2}} }=\frac{4\cdot\sqrt{2}}{2}=2\cdot\sqrt{2}\)
- \(\frac{30}{\sqrt{10}}=\frac{30\cdot \color{red}{\sqrt{10}} }{\sqrt{10}\cdot \color{red}{\sqrt{10}} }=\frac{30\cdot\sqrt{10}}{10}=3\cdot\sqrt{10}\)
- \(\frac{59}{\sqrt{8}}=\frac{59\cdot \color{red}{\sqrt{8}} }{\sqrt{8}\cdot \color{red}{\sqrt{8}} }=\frac{59\cdot\sqrt{8}}{8}\)
- \(\frac{20}{\sqrt{19}}=\frac{20\cdot \color{red}{\sqrt{19}} }{\sqrt{19}\cdot \color{red}{\sqrt{19}} }=\frac{20\cdot\sqrt{19}}{19}\)
- \(\frac{55}{\sqrt{2}}=\frac{55\cdot \color{red}{\sqrt{2}} }{\sqrt{2}\cdot \color{red}{\sqrt{2}} }=\frac{55\cdot\sqrt{2}}{2}\)
- \(\frac{21}{\sqrt{17}}=\frac{21\cdot \color{red}{\sqrt{17}} }{\sqrt{17}\cdot \color{red}{\sqrt{17}} }=\frac{21\cdot\sqrt{17}}{17}\)
- \(\frac{51}{\sqrt{8}}=\frac{51\cdot \color{red}{\sqrt{8}} }{\sqrt{8}\cdot \color{red}{\sqrt{8}} }=\frac{51\cdot\sqrt{8}}{8}\)
- \(\frac{10}{\sqrt{10}}=\frac{10\cdot \color{red}{\sqrt{10}} }{\sqrt{10}\cdot \color{red}{\sqrt{10}} }=\frac{10\cdot\sqrt{10}}{10}=\frac{\sqrt{10}}{1}\)
- \(\frac{42}{\sqrt{6}}=\frac{42\cdot \color{red}{\sqrt{6}} }{\sqrt{6}\cdot \color{red}{\sqrt{6}} }=\frac{42\cdot\sqrt{6}}{6}=7\cdot\sqrt{6}\)
- \(\frac{35}{\sqrt{2}}=\frac{35\cdot \color{red}{\sqrt{2}} }{\sqrt{2}\cdot \color{red}{\sqrt{2}} }=\frac{35\cdot\sqrt{2}}{2}\)