Maak de noemer wortelvrij
- \(\frac{37}{\sqrt{8}}\)
- \(\frac{26}{\sqrt{3}}\)
- \(\frac{32}{\sqrt{6}}\)
- \(\frac{60}{\sqrt{5}}\)
- \(\frac{35}{\sqrt{13}}\)
- \(\frac{33}{\sqrt{5}}\)
- \(\frac{53}{\sqrt{7}}\)
- \(\frac{60}{\sqrt{2}}\)
- \(\frac{46}{\sqrt{14}}\)
- \(\frac{59}{\sqrt{7}}\)
- \(\frac{22}{\sqrt{13}}\)
- \(\frac{46}{\sqrt{17}}\)
Maak de noemer wortelvrij
Verbetersleutel
- \(\frac{37}{\sqrt{8}}=\frac{37\cdot \color{red}{\sqrt{8}} }{\sqrt{8}\cdot \color{red}{\sqrt{8}} }=\frac{37\cdot\sqrt{8}}{8}\)
- \(\frac{26}{\sqrt{3}}=\frac{26\cdot \color{red}{\sqrt{3}} }{\sqrt{3}\cdot \color{red}{\sqrt{3}} }=\frac{26\cdot\sqrt{3}}{3}\)
- \(\frac{32}{\sqrt{6}}=\frac{32\cdot \color{red}{\sqrt{6}} }{\sqrt{6}\cdot \color{red}{\sqrt{6}} }=\frac{32\cdot\sqrt{6}}{6}=\frac{16\cdot\sqrt{6}}{3}\)
- \(\frac{60}{\sqrt{5}}=\frac{60\cdot \color{red}{\sqrt{5}} }{\sqrt{5}\cdot \color{red}{\sqrt{5}} }=\frac{60\cdot\sqrt{5}}{5}=12\cdot\sqrt{5}\)
- \(\frac{35}{\sqrt{13}}=\frac{35\cdot \color{red}{\sqrt{13}} }{\sqrt{13}\cdot \color{red}{\sqrt{13}} }=\frac{35\cdot\sqrt{13}}{13}\)
- \(\frac{33}{\sqrt{5}}=\frac{33\cdot \color{red}{\sqrt{5}} }{\sqrt{5}\cdot \color{red}{\sqrt{5}} }=\frac{33\cdot\sqrt{5}}{5}\)
- \(\frac{53}{\sqrt{7}}=\frac{53\cdot \color{red}{\sqrt{7}} }{\sqrt{7}\cdot \color{red}{\sqrt{7}} }=\frac{53\cdot\sqrt{7}}{7}\)
- \(\frac{60}{\sqrt{2}}=\frac{60\cdot \color{red}{\sqrt{2}} }{\sqrt{2}\cdot \color{red}{\sqrt{2}} }=\frac{60\cdot\sqrt{2}}{2}=30\cdot\sqrt{2}\)
- \(\frac{46}{\sqrt{14}}=\frac{46\cdot \color{red}{\sqrt{14}} }{\sqrt{14}\cdot \color{red}{\sqrt{14}} }=\frac{46\cdot\sqrt{14}}{14}=\frac{23\cdot\sqrt{14}}{7}\)
- \(\frac{59}{\sqrt{7}}=\frac{59\cdot \color{red}{\sqrt{7}} }{\sqrt{7}\cdot \color{red}{\sqrt{7}} }=\frac{59\cdot\sqrt{7}}{7}\)
- \(\frac{22}{\sqrt{13}}=\frac{22\cdot \color{red}{\sqrt{13}} }{\sqrt{13}\cdot \color{red}{\sqrt{13}} }=\frac{22\cdot\sqrt{13}}{13}\)
- \(\frac{46}{\sqrt{17}}=\frac{46\cdot \color{red}{\sqrt{17}} }{\sqrt{17}\cdot \color{red}{\sqrt{17}} }=\frac{46\cdot\sqrt{17}}{17}\)