Bepaal de waarde van x. Meerdere manieren van oplossen mogelijk
- \(10x+3=12+3x\)
- \(-13x-8=8-2x\)
- \(-4x-5=14-11x\)
- \(14x+12=2+11x\)
- \(-9x-6=-10+2x\)
- \(15x+4=12+11x\)
- \(-10x-6=-1+13x\)
- \(-9x+11=-12+2x\)
- \(11x-2=-12+2x\)
- \(3x+9=10+11x\)
- \(6x+4=-2+11x\)
- \(-10x+14=15-9x\)
Bepaal de waarde van x. Meerdere manieren van oplossen mogelijk
Verbetersleutel
- \(\begin{align} & 10x \color{red}{+3}& = & 12 \color{red}{ +3x } \\\Leftrightarrow & 10x \color{red}{+3}\color{blue}{-3-3x }
& = & 12 \color{red}{ +3x }\color{blue}{-3-3x } \\\Leftrightarrow & 10x \color{blue}{-3x }
& = & 12 \color{blue}{-3} \\\Leftrightarrow &7x
& = &9\\\Leftrightarrow & \color{red}{7}x
& = &9\\\Leftrightarrow & \frac{\color{red}{7}x}{ \color{blue}{ 7}}
& = & \frac{9}{7} \\\Leftrightarrow & \color{green}{ x = \frac{9}{7} } & & \\ & V = \left\{ \frac{9}{7} \right\} & \\\end{align}\)
- \(\begin{align} & -13x \color{red}{-8}& = & 8 \color{red}{ -2x } \\\Leftrightarrow & -13x \color{red}{-8}\color{blue}{+8+2x }
& = & 8 \color{red}{ -2x }\color{blue}{+8+2x } \\\Leftrightarrow & -13x \color{blue}{+2x }
& = & 8 \color{blue}{+8} \\\Leftrightarrow &-11x
& = &16\\\Leftrightarrow & \color{red}{-11}x
& = &16\\\Leftrightarrow & \frac{\color{red}{-11}x}{ \color{blue}{ -11}}
& = & \frac{16}{-11} \\\Leftrightarrow & \color{green}{ x = \frac{-16}{11} } & & \\ & V = \left\{ \frac{-16}{11} \right\} & \\\end{align}\)
- \(\begin{align} & -4x \color{red}{-5}& = & 14 \color{red}{ -11x } \\\Leftrightarrow & -4x \color{red}{-5}\color{blue}{+5+11x }
& = & 14 \color{red}{ -11x }\color{blue}{+5+11x } \\\Leftrightarrow & -4x \color{blue}{+11x }
& = & 14 \color{blue}{+5} \\\Leftrightarrow &7x
& = &19\\\Leftrightarrow & \color{red}{7}x
& = &19\\\Leftrightarrow & \frac{\color{red}{7}x}{ \color{blue}{ 7}}
& = & \frac{19}{7} \\\Leftrightarrow & \color{green}{ x = \frac{19}{7} } & & \\ & V = \left\{ \frac{19}{7} \right\} & \\\end{align}\)
- \(\begin{align} & 14x \color{red}{+12}& = & 2 \color{red}{ +11x } \\\Leftrightarrow & 14x \color{red}{+12}\color{blue}{-12-11x }
& = & 2 \color{red}{ +11x }\color{blue}{-12-11x } \\\Leftrightarrow & 14x \color{blue}{-11x }
& = & 2 \color{blue}{-12} \\\Leftrightarrow &3x
& = &-10\\\Leftrightarrow & \color{red}{3}x
& = &-10\\\Leftrightarrow & \frac{\color{red}{3}x}{ \color{blue}{ 3}}
& = & \frac{-10}{3} \\\Leftrightarrow & \color{green}{ x = \frac{-10}{3} } & & \\ & V = \left\{ \frac{-10}{3} \right\} & \\\end{align}\)
- \(\begin{align} & -9x \color{red}{-6}& = & -10 \color{red}{ +2x } \\\Leftrightarrow & -9x \color{red}{-6}\color{blue}{+6-2x }
& = & -10 \color{red}{ +2x }\color{blue}{+6-2x } \\\Leftrightarrow & -9x \color{blue}{-2x }
& = & -10 \color{blue}{+6} \\\Leftrightarrow &-11x
& = &-4\\\Leftrightarrow & \color{red}{-11}x
& = &-4\\\Leftrightarrow & \frac{\color{red}{-11}x}{ \color{blue}{ -11}}
& = & \frac{-4}{-11} \\\Leftrightarrow & \color{green}{ x = \frac{4}{11} } & & \\ & V = \left\{ \frac{4}{11} \right\} & \\\end{align}\)
- \(\begin{align} & 15x \color{red}{+4}& = & 12 \color{red}{ +11x } \\\Leftrightarrow & 15x \color{red}{+4}\color{blue}{-4-11x }
& = & 12 \color{red}{ +11x }\color{blue}{-4-11x } \\\Leftrightarrow & 15x \color{blue}{-11x }
& = & 12 \color{blue}{-4} \\\Leftrightarrow &4x
& = &8\\\Leftrightarrow & \color{red}{4}x
& = &8\\\Leftrightarrow & \frac{\color{red}{4}x}{ \color{blue}{ 4}}
& = & \frac{8}{4} \\\Leftrightarrow & \color{green}{ x = 2 } & & \\ & V = \left\{ 2 \right\} & \\\end{align}\)
- \(\begin{align} & -10x \color{red}{-6}& = & -1 \color{red}{ +13x } \\\Leftrightarrow & -10x \color{red}{-6}\color{blue}{+6-13x }
& = & -1 \color{red}{ +13x }\color{blue}{+6-13x } \\\Leftrightarrow & -10x \color{blue}{-13x }
& = & -1 \color{blue}{+6} \\\Leftrightarrow &-23x
& = &5\\\Leftrightarrow & \color{red}{-23}x
& = &5\\\Leftrightarrow & \frac{\color{red}{-23}x}{ \color{blue}{ -23}}
& = & \frac{5}{-23} \\\Leftrightarrow & \color{green}{ x = \frac{-5}{23} } & & \\ & V = \left\{ \frac{-5}{23} \right\} & \\\end{align}\)
- \(\begin{align} & -9x \color{red}{+11}& = & -12 \color{red}{ +2x } \\\Leftrightarrow & -9x \color{red}{+11}\color{blue}{-11-2x }
& = & -12 \color{red}{ +2x }\color{blue}{-11-2x } \\\Leftrightarrow & -9x \color{blue}{-2x }
& = & -12 \color{blue}{-11} \\\Leftrightarrow &-11x
& = &-23\\\Leftrightarrow & \color{red}{-11}x
& = &-23\\\Leftrightarrow & \frac{\color{red}{-11}x}{ \color{blue}{ -11}}
& = & \frac{-23}{-11} \\\Leftrightarrow & \color{green}{ x = \frac{23}{11} } & & \\ & V = \left\{ \frac{23}{11} \right\} & \\\end{align}\)
- \(\begin{align} & 11x \color{red}{-2}& = & -12 \color{red}{ +2x } \\\Leftrightarrow & 11x \color{red}{-2}\color{blue}{+2-2x }
& = & -12 \color{red}{ +2x }\color{blue}{+2-2x } \\\Leftrightarrow & 11x \color{blue}{-2x }
& = & -12 \color{blue}{+2} \\\Leftrightarrow &9x
& = &-10\\\Leftrightarrow & \color{red}{9}x
& = &-10\\\Leftrightarrow & \frac{\color{red}{9}x}{ \color{blue}{ 9}}
& = & \frac{-10}{9} \\\Leftrightarrow & \color{green}{ x = \frac{-10}{9} } & & \\ & V = \left\{ \frac{-10}{9} \right\} & \\\end{align}\)
- \(\begin{align} & 3x \color{red}{+9}& = & 10 \color{red}{ +11x } \\\Leftrightarrow & 3x \color{red}{+9}\color{blue}{-9-11x }
& = & 10 \color{red}{ +11x }\color{blue}{-9-11x } \\\Leftrightarrow & 3x \color{blue}{-11x }
& = & 10 \color{blue}{-9} \\\Leftrightarrow &-8x
& = &1\\\Leftrightarrow & \color{red}{-8}x
& = &1\\\Leftrightarrow & \frac{\color{red}{-8}x}{ \color{blue}{ -8}}
& = & \frac{1}{-8} \\\Leftrightarrow & \color{green}{ x = \frac{-1}{8} } & & \\ & V = \left\{ \frac{-1}{8} \right\} & \\\end{align}\)
- \(\begin{align} & 6x \color{red}{+4}& = & -2 \color{red}{ +11x } \\\Leftrightarrow & 6x \color{red}{+4}\color{blue}{-4-11x }
& = & -2 \color{red}{ +11x }\color{blue}{-4-11x } \\\Leftrightarrow & 6x \color{blue}{-11x }
& = & -2 \color{blue}{-4} \\\Leftrightarrow &-5x
& = &-6\\\Leftrightarrow & \color{red}{-5}x
& = &-6\\\Leftrightarrow & \frac{\color{red}{-5}x}{ \color{blue}{ -5}}
& = & \frac{-6}{-5} \\\Leftrightarrow & \color{green}{ x = \frac{6}{5} } & & \\ & V = \left\{ \frac{6}{5} \right\} & \\\end{align}\)
- \(\begin{align} & -10x \color{red}{+14}& = & 15 \color{red}{ -9x } \\\Leftrightarrow & -10x \color{red}{+14}\color{blue}{-14+9x }
& = & 15 \color{red}{ -9x }\color{blue}{-14+9x } \\\Leftrightarrow & -10x \color{blue}{+9x }
& = & 15 \color{blue}{-14} \\\Leftrightarrow &-x
& = &1\\\Leftrightarrow & \color{red}{-}x
& = &1\\\Leftrightarrow & \frac{\color{red}{-}x}{ \color{blue}{ -1}}
& = & \frac{1}{-1} \\\Leftrightarrow & \color{green}{ x = -1 } & & \\ & V = \left\{ -1 \right\} & \\\end{align}\)