Bepaal de waarde van x. Meerdere manieren van oplossen mogelijk
- \(-12x-5=14+13x\)
- \(-11x+3=2-8x\)
- \(-9x-8=-2-8x\)
- \(8x-1=-6+11x\)
- \(4x-9=-1+5x\)
- \(6x-4=10+13x\)
- \(-4x+15=2-7x\)
- \(-7x+7=-15-2x\)
- \(-14x-3=-5+x\)
- \(2x+15=-6+15x\)
- \(13x-4=-9+14x\)
- \(2x+14=-4+11x\)
Bepaal de waarde van x. Meerdere manieren van oplossen mogelijk
Verbetersleutel
- \(\begin{align} & -12x \color{red}{-5}& = & 14 \color{red}{ +13x } \\\Leftrightarrow & -12x \color{red}{-5}\color{blue}{+5-13x }
& = & 14 \color{red}{ +13x }\color{blue}{+5-13x } \\\Leftrightarrow & -12x \color{blue}{-13x }
& = & 14 \color{blue}{+5} \\\Leftrightarrow &-25x
& = &19\\\Leftrightarrow & \color{red}{-25}x
& = &19\\\Leftrightarrow & \frac{\color{red}{-25}x}{ \color{blue}{ -25}}
& = & \frac{19}{-25} \\\Leftrightarrow & \color{green}{ x = \frac{-19}{25} } & & \\ & V = \left\{ \frac{-19}{25} \right\} & \\\end{align}\)
- \(\begin{align} & -11x \color{red}{+3}& = & 2 \color{red}{ -8x } \\\Leftrightarrow & -11x \color{red}{+3}\color{blue}{-3+8x }
& = & 2 \color{red}{ -8x }\color{blue}{-3+8x } \\\Leftrightarrow & -11x \color{blue}{+8x }
& = & 2 \color{blue}{-3} \\\Leftrightarrow &-3x
& = &-1\\\Leftrightarrow & \color{red}{-3}x
& = &-1\\\Leftrightarrow & \frac{\color{red}{-3}x}{ \color{blue}{ -3}}
& = & \frac{-1}{-3} \\\Leftrightarrow & \color{green}{ x = \frac{1}{3} } & & \\ & V = \left\{ \frac{1}{3} \right\} & \\\end{align}\)
- \(\begin{align} & -9x \color{red}{-8}& = & -2 \color{red}{ -8x } \\\Leftrightarrow & -9x \color{red}{-8}\color{blue}{+8+8x }
& = & -2 \color{red}{ -8x }\color{blue}{+8+8x } \\\Leftrightarrow & -9x \color{blue}{+8x }
& = & -2 \color{blue}{+8} \\\Leftrightarrow &-x
& = &6\\\Leftrightarrow & \color{red}{-}x
& = &6\\\Leftrightarrow & \frac{\color{red}{-}x}{ \color{blue}{ -1}}
& = & \frac{6}{-1} \\\Leftrightarrow & \color{green}{ x = -6 } & & \\ & V = \left\{ -6 \right\} & \\\end{align}\)
- \(\begin{align} & 8x \color{red}{-1}& = & -6 \color{red}{ +11x } \\\Leftrightarrow & 8x \color{red}{-1}\color{blue}{+1-11x }
& = & -6 \color{red}{ +11x }\color{blue}{+1-11x } \\\Leftrightarrow & 8x \color{blue}{-11x }
& = & -6 \color{blue}{+1} \\\Leftrightarrow &-3x
& = &-5\\\Leftrightarrow & \color{red}{-3}x
& = &-5\\\Leftrightarrow & \frac{\color{red}{-3}x}{ \color{blue}{ -3}}
& = & \frac{-5}{-3} \\\Leftrightarrow & \color{green}{ x = \frac{5}{3} } & & \\ & V = \left\{ \frac{5}{3} \right\} & \\\end{align}\)
- \(\begin{align} & 4x \color{red}{-9}& = & -1 \color{red}{ +5x } \\\Leftrightarrow & 4x \color{red}{-9}\color{blue}{+9-5x }
& = & -1 \color{red}{ +5x }\color{blue}{+9-5x } \\\Leftrightarrow & 4x \color{blue}{-5x }
& = & -1 \color{blue}{+9} \\\Leftrightarrow &-x
& = &8\\\Leftrightarrow & \color{red}{-}x
& = &8\\\Leftrightarrow & \frac{\color{red}{-}x}{ \color{blue}{ -1}}
& = & \frac{8}{-1} \\\Leftrightarrow & \color{green}{ x = -8 } & & \\ & V = \left\{ -8 \right\} & \\\end{align}\)
- \(\begin{align} & 6x \color{red}{-4}& = & 10 \color{red}{ +13x } \\\Leftrightarrow & 6x \color{red}{-4}\color{blue}{+4-13x }
& = & 10 \color{red}{ +13x }\color{blue}{+4-13x } \\\Leftrightarrow & 6x \color{blue}{-13x }
& = & 10 \color{blue}{+4} \\\Leftrightarrow &-7x
& = &14\\\Leftrightarrow & \color{red}{-7}x
& = &14\\\Leftrightarrow & \frac{\color{red}{-7}x}{ \color{blue}{ -7}}
& = & \frac{14}{-7} \\\Leftrightarrow & \color{green}{ x = -2 } & & \\ & V = \left\{ -2 \right\} & \\\end{align}\)
- \(\begin{align} & -4x \color{red}{+15}& = & 2 \color{red}{ -7x } \\\Leftrightarrow & -4x \color{red}{+15}\color{blue}{-15+7x }
& = & 2 \color{red}{ -7x }\color{blue}{-15+7x } \\\Leftrightarrow & -4x \color{blue}{+7x }
& = & 2 \color{blue}{-15} \\\Leftrightarrow &3x
& = &-13\\\Leftrightarrow & \color{red}{3}x
& = &-13\\\Leftrightarrow & \frac{\color{red}{3}x}{ \color{blue}{ 3}}
& = & \frac{-13}{3} \\\Leftrightarrow & \color{green}{ x = \frac{-13}{3} } & & \\ & V = \left\{ \frac{-13}{3} \right\} & \\\end{align}\)
- \(\begin{align} & -7x \color{red}{+7}& = & -15 \color{red}{ -2x } \\\Leftrightarrow & -7x \color{red}{+7}\color{blue}{-7+2x }
& = & -15 \color{red}{ -2x }\color{blue}{-7+2x } \\\Leftrightarrow & -7x \color{blue}{+2x }
& = & -15 \color{blue}{-7} \\\Leftrightarrow &-5x
& = &-22\\\Leftrightarrow & \color{red}{-5}x
& = &-22\\\Leftrightarrow & \frac{\color{red}{-5}x}{ \color{blue}{ -5}}
& = & \frac{-22}{-5} \\\Leftrightarrow & \color{green}{ x = \frac{22}{5} } & & \\ & V = \left\{ \frac{22}{5} \right\} & \\\end{align}\)
- \(\begin{align} & -14x \color{red}{-3}& = & -5 \color{red}{ +x } \\\Leftrightarrow & -14x \color{red}{-3}\color{blue}{+3-x }
& = & -5 \color{red}{ +x }\color{blue}{+3-x } \\\Leftrightarrow & -14x \color{blue}{-x }
& = & -5 \color{blue}{+3} \\\Leftrightarrow &-15x
& = &-2\\\Leftrightarrow & \color{red}{-15}x
& = &-2\\\Leftrightarrow & \frac{\color{red}{-15}x}{ \color{blue}{ -15}}
& = & \frac{-2}{-15} \\\Leftrightarrow & \color{green}{ x = \frac{2}{15} } & & \\ & V = \left\{ \frac{2}{15} \right\} & \\\end{align}\)
- \(\begin{align} & 2x \color{red}{+15}& = & -6 \color{red}{ +15x } \\\Leftrightarrow & 2x \color{red}{+15}\color{blue}{-15-15x }
& = & -6 \color{red}{ +15x }\color{blue}{-15-15x } \\\Leftrightarrow & 2x \color{blue}{-15x }
& = & -6 \color{blue}{-15} \\\Leftrightarrow &-13x
& = &-21\\\Leftrightarrow & \color{red}{-13}x
& = &-21\\\Leftrightarrow & \frac{\color{red}{-13}x}{ \color{blue}{ -13}}
& = & \frac{-21}{-13} \\\Leftrightarrow & \color{green}{ x = \frac{21}{13} } & & \\ & V = \left\{ \frac{21}{13} \right\} & \\\end{align}\)
- \(\begin{align} & 13x \color{red}{-4}& = & -9 \color{red}{ +14x } \\\Leftrightarrow & 13x \color{red}{-4}\color{blue}{+4-14x }
& = & -9 \color{red}{ +14x }\color{blue}{+4-14x } \\\Leftrightarrow & 13x \color{blue}{-14x }
& = & -9 \color{blue}{+4} \\\Leftrightarrow &-x
& = &-5\\\Leftrightarrow & \color{red}{-}x
& = &-5\\\Leftrightarrow & \frac{\color{red}{-}x}{ \color{blue}{ -1}}
& = & \frac{-5}{-1} \\\Leftrightarrow & \color{green}{ x = 5 } & & \\ & V = \left\{ 5 \right\} & \\\end{align}\)
- \(\begin{align} & 2x \color{red}{+14}& = & -4 \color{red}{ +11x } \\\Leftrightarrow & 2x \color{red}{+14}\color{blue}{-14-11x }
& = & -4 \color{red}{ +11x }\color{blue}{-14-11x } \\\Leftrightarrow & 2x \color{blue}{-11x }
& = & -4 \color{blue}{-14} \\\Leftrightarrow &-9x
& = &-18\\\Leftrightarrow & \color{red}{-9}x
& = &-18\\\Leftrightarrow & \frac{\color{red}{-9}x}{ \color{blue}{ -9}}
& = & \frac{-18}{-9} \\\Leftrightarrow & \color{green}{ x = 2 } & & \\ & V = \left\{ 2 \right\} & \\\end{align}\)