Bepaal de waarde van x.
- \(8x-6=-14\)
- \(-5x+8=-15\)
- \(9x+2=7\)
- \(-9x-14=13\)
- \(-10x+14=-5\)
- \(-2x-11=-13\)
- \(9x-8=5\)
- \(8x+11=-10\)
- \(4x+4=-15\)
- \(-4x+8=-14\)
- \(3x-2=-6\)
- \(12x-13=-14\)
Bepaal de waarde van x.
Verbetersleutel
- \(\begin{align} & 8x \color{red}{-6}& = &-14 \\\Leftrightarrow & 8x \color{red}{-6}\color{blue}{+6}
& = &-14\color{blue}{+6} \\\Leftrightarrow &8x
& = &-8\\\Leftrightarrow & \color{red}{8}x
& = &-8\\\Leftrightarrow & \frac{\color{red}{8}x}{ \color{blue}8}
& = & \frac{-8}{8} \\\Leftrightarrow & \color{green}{ x = -1 } & & \\ & V = \left\{ -1 \right\} & \\\end{align}\)
- \(\begin{align} & -5x \color{red}{+8}& = &-15 \\\Leftrightarrow & -5x \color{red}{+8}\color{blue}{-8}
& = &-15\color{blue}{-8} \\\Leftrightarrow &-5x
& = &-23\\\Leftrightarrow & \color{red}{-5}x
& = &-23\\\Leftrightarrow & \frac{\color{red}{-5}x}{ \color{blue}-5}
& = & \frac{-23}{-5} \\\Leftrightarrow & \color{green}{ x = \frac{23}{5} } & & \\ & V = \left\{ \frac{23}{5} \right\} & \\\end{align}\)
- \(\begin{align} & 9x \color{red}{+2}& = &7 \\\Leftrightarrow & 9x \color{red}{+2}\color{blue}{-2}
& = &7\color{blue}{-2} \\\Leftrightarrow &9x
& = &5\\\Leftrightarrow & \color{red}{9}x
& = &5\\\Leftrightarrow & \frac{\color{red}{9}x}{ \color{blue}9}
& = & \frac{5}{9} \\\Leftrightarrow & \color{green}{ x = \frac{5}{9} } & & \\ & V = \left\{ \frac{5}{9} \right\} & \\\end{align}\)
- \(\begin{align} & -9x \color{red}{-14}& = &13 \\\Leftrightarrow & -9x \color{red}{-14}\color{blue}{+14}
& = &13\color{blue}{+14} \\\Leftrightarrow &-9x
& = &27\\\Leftrightarrow & \color{red}{-9}x
& = &27\\\Leftrightarrow & \frac{\color{red}{-9}x}{ \color{blue}-9}
& = & \frac{27}{-9} \\\Leftrightarrow & \color{green}{ x = -3 } & & \\ & V = \left\{ -3 \right\} & \\\end{align}\)
- \(\begin{align} & -10x \color{red}{+14}& = &-5 \\\Leftrightarrow & -10x \color{red}{+14}\color{blue}{-14}
& = &-5\color{blue}{-14} \\\Leftrightarrow &-10x
& = &-19\\\Leftrightarrow & \color{red}{-10}x
& = &-19\\\Leftrightarrow & \frac{\color{red}{-10}x}{ \color{blue}-10}
& = & \frac{-19}{-10} \\\Leftrightarrow & \color{green}{ x = \frac{19}{10} } & & \\ & V = \left\{ \frac{19}{10} \right\} & \\\end{align}\)
- \(\begin{align} & -2x \color{red}{-11}& = &-13 \\\Leftrightarrow & -2x \color{red}{-11}\color{blue}{+11}
& = &-13\color{blue}{+11} \\\Leftrightarrow &-2x
& = &-2\\\Leftrightarrow & \color{red}{-2}x
& = &-2\\\Leftrightarrow & \frac{\color{red}{-2}x}{ \color{blue}-2}
& = & \frac{-2}{-2} \\\Leftrightarrow & \color{green}{ x = 1 } & & \\ & V = \left\{ 1 \right\} & \\\end{align}\)
- \(\begin{align} & 9x \color{red}{-8}& = &5 \\\Leftrightarrow & 9x \color{red}{-8}\color{blue}{+8}
& = &5\color{blue}{+8} \\\Leftrightarrow &9x
& = &13\\\Leftrightarrow & \color{red}{9}x
& = &13\\\Leftrightarrow & \frac{\color{red}{9}x}{ \color{blue}9}
& = & \frac{13}{9} \\\Leftrightarrow & \color{green}{ x = \frac{13}{9} } & & \\ & V = \left\{ \frac{13}{9} \right\} & \\\end{align}\)
- \(\begin{align} & 8x \color{red}{+11}& = &-10 \\\Leftrightarrow & 8x \color{red}{+11}\color{blue}{-11}
& = &-10\color{blue}{-11} \\\Leftrightarrow &8x
& = &-21\\\Leftrightarrow & \color{red}{8}x
& = &-21\\\Leftrightarrow & \frac{\color{red}{8}x}{ \color{blue}8}
& = & \frac{-21}{8} \\\Leftrightarrow & \color{green}{ x = \frac{-21}{8} } & & \\ & V = \left\{ \frac{-21}{8} \right\} & \\\end{align}\)
- \(\begin{align} & 4x \color{red}{+4}& = &-15 \\\Leftrightarrow & 4x \color{red}{+4}\color{blue}{-4}
& = &-15\color{blue}{-4} \\\Leftrightarrow &4x
& = &-19\\\Leftrightarrow & \color{red}{4}x
& = &-19\\\Leftrightarrow & \frac{\color{red}{4}x}{ \color{blue}4}
& = & \frac{-19}{4} \\\Leftrightarrow & \color{green}{ x = \frac{-19}{4} } & & \\ & V = \left\{ \frac{-19}{4} \right\} & \\\end{align}\)
- \(\begin{align} & -4x \color{red}{+8}& = &-14 \\\Leftrightarrow & -4x \color{red}{+8}\color{blue}{-8}
& = &-14\color{blue}{-8} \\\Leftrightarrow &-4x
& = &-22\\\Leftrightarrow & \color{red}{-4}x
& = &-22\\\Leftrightarrow & \frac{\color{red}{-4}x}{ \color{blue}-4}
& = & \frac{-22}{-4} \\\Leftrightarrow & \color{green}{ x = \frac{11}{2} } & & \\ & V = \left\{ \frac{11}{2} \right\} & \\\end{align}\)
- \(\begin{align} & 3x \color{red}{-2}& = &-6 \\\Leftrightarrow & 3x \color{red}{-2}\color{blue}{+2}
& = &-6\color{blue}{+2} \\\Leftrightarrow &3x
& = &-4\\\Leftrightarrow & \color{red}{3}x
& = &-4\\\Leftrightarrow & \frac{\color{red}{3}x}{ \color{blue}3}
& = & \frac{-4}{3} \\\Leftrightarrow & \color{green}{ x = \frac{-4}{3} } & & \\ & V = \left\{ \frac{-4}{3} \right\} & \\\end{align}\)
- \(\begin{align} & 12x \color{red}{-13}& = &-14 \\\Leftrightarrow & 12x \color{red}{-13}\color{blue}{+13}
& = &-14\color{blue}{+13} \\\Leftrightarrow &12x
& = &-1\\\Leftrightarrow & \color{red}{12}x
& = &-1\\\Leftrightarrow & \frac{\color{red}{12}x}{ \color{blue}12}
& = & \frac{-1}{12} \\\Leftrightarrow & \color{green}{ x = \frac{-1}{12} } & & \\ & V = \left\{ \frac{-1}{12} \right\} & \\\end{align}\)