Stelsels substitutie (reeks 1)

Hoofdmenu Eentje per keer 

Substitutie

  1. \(\left\{\begin{matrix}6y=-60+4x\\-x-5y=11\end{matrix}\right.\)
  2. \(\left\{\begin{matrix}-x-5y=-34\\-4x=3y-34\end{matrix}\right.\)
  3. \(\left\{\begin{matrix}-4y=-35-5x\\5x+y=-10\end{matrix}\right.\)
  4. \(\left\{\begin{matrix}-2x-y=-4\\-2x-2y=-14\end{matrix}\right.\)
  5. \(\left\{\begin{matrix}4x-5y=-3\\-x=-5y-18\end{matrix}\right.\)
  6. \(\left\{\begin{matrix}-2x+2y=20\\x=2y-12\end{matrix}\right.\)
  7. \(\left\{\begin{matrix}-5y=-70+5x\\-x+2y=7\end{matrix}\right.\)
  8. \(\left\{\begin{matrix}-6y=-24-6x\\-2x+y=3\end{matrix}\right.\)
  9. \(\left\{\begin{matrix}-y=37+4x\\-4x-4y=28\end{matrix}\right.\)
  10. \(\left\{\begin{matrix}-2x-4y=-38\\-2x+y=7\end{matrix}\right.\)
  11. \(\left\{\begin{matrix}6x+3y=-39\\3x-y=-12\end{matrix}\right.\)
  12. \(\left\{\begin{matrix}3y=42+3x\\5x-y=-30\end{matrix}\right.\)

Substitutie

Verbetersleutel

  1. \(\left\{\begin{matrix}6y=-60+4x\\-x-5y=11\end{matrix}\right.\qquad V=\{(9,-4)\}\)
  2. \(\left\{\begin{matrix}-x-5y=-34\\-4x=3y-34\end{matrix}\right.\qquad V=\{(4,6)\}\)
  3. \(\left\{\begin{matrix}-4y=-35-5x\\5x+y=-10\end{matrix}\right.\qquad V=\{(-3,5)\}\)
  4. \(\left\{\begin{matrix}-2x-y=-4\\-2x-2y=-14\end{matrix}\right.\qquad V=\{(-3,10)\}\)
  5. \(\left\{\begin{matrix}4x-5y=-3\\-x=-5y-18\end{matrix}\right.\qquad V=\{(-7,-5)\}\)
  6. \(\left\{\begin{matrix}-2x+2y=20\\x=2y-12\end{matrix}\right.\qquad V=\{(-8,2)\}\)
  7. \(\left\{\begin{matrix}-5y=-70+5x\\-x+2y=7\end{matrix}\right.\qquad V=\{(7,7)\}\)
  8. \(\left\{\begin{matrix}-6y=-24-6x\\-2x+y=3\end{matrix}\right.\qquad V=\{(1,5)\}\)
  9. \(\left\{\begin{matrix}-y=37+4x\\-4x-4y=28\end{matrix}\right.\qquad V=\{(-10,3)\}\)
  10. \(\left\{\begin{matrix}-2x-4y=-38\\-2x+y=7\end{matrix}\right.\qquad V=\{(1,9)\}\)
  11. \(\left\{\begin{matrix}6x+3y=-39\\3x-y=-12\end{matrix}\right.\qquad V=\{(-5,-3)\}\)
  12. \(\left\{\begin{matrix}3y=42+3x\\5x-y=-30\end{matrix}\right.\qquad V=\{(-4,10)\}\)
Oefeningengenerator vanhoeckes.be/wiskunde 2021-12-02 01:03:38