Combinatie
- \(\left\{\begin{matrix}10x-5y=75\\5x=10y+90\end{matrix}\right.\)
- \(\left\{\begin{matrix}-6x+10y=-32\\-2x=-10y-24\end{matrix}\right.\)
- \(\left\{\begin{matrix}3x-7y=-75\\9y-8x=113\end{matrix}\right.\)
- \(\left\{\begin{matrix}-4y=126-10x\\-6x+8y=-126\end{matrix}\right.\)
- \(\left\{\begin{matrix}8x-3y=50\\-5x-10y=40\end{matrix}\right.\)
- \(\left\{\begin{matrix}-7y=-83+9x\\-2x+9y=-29\end{matrix}\right.\)
- \(\left\{\begin{matrix}-7y+2x=25\\10x-10y=50\end{matrix}\right.\)
- \(\left\{\begin{matrix}2x-6y=-58\\-3x=8y-83\end{matrix}\right.\)
- \(\left\{\begin{matrix}5y+6x=-41\\2x-6y=-6\end{matrix}\right.\)
- \(\left\{\begin{matrix}5y-10x=45\\9x-4y=-43\end{matrix}\right.\)
- \(\left\{\begin{matrix}-10x-8y=-42\\9x-6y=51\end{matrix}\right.\)
- \(\left\{\begin{matrix}9x-4y=-114\\8x=-4y-56\end{matrix}\right.\)
Combinatie
Verbetersleutel
- \(\left\{\begin{matrix}10x-5y=75\\5x=10y+90\end{matrix}\right.\qquad V=\{(4,-7)\}\)
- \(\left\{\begin{matrix}-6x+10y=-32\\-2x=-10y-24\end{matrix}\right.\qquad V=\{(2,-2)\}\)
- \(\left\{\begin{matrix}3x-7y=-75\\9y-8x=113\end{matrix}\right.\qquad V=\{(-4,9)\}\)
- \(\left\{\begin{matrix}-4y=126-10x\\-6x+8y=-126\end{matrix}\right.\qquad V=\{(9,-9)\}\)
- \(\left\{\begin{matrix}8x-3y=50\\-5x-10y=40\end{matrix}\right.\qquad V=\{(4,-6)\}\)
- \(\left\{\begin{matrix}-7y=-83+9x\\-2x+9y=-29\end{matrix}\right.\qquad V=\{(10,-1)\}\)
- \(\left\{\begin{matrix}-7y+2x=25\\10x-10y=50\end{matrix}\right.\qquad V=\{(2,-3)\}\)
- \(\left\{\begin{matrix}2x-6y=-58\\-3x=8y-83\end{matrix}\right.\qquad V=\{(1,10)\}\)
- \(\left\{\begin{matrix}5y+6x=-41\\2x-6y=-6\end{matrix}\right.\qquad V=\{(-6,-1)\}\)
- \(\left\{\begin{matrix}5y-10x=45\\9x-4y=-43\end{matrix}\right.\qquad V=\{(-7,-5)\}\)
- \(\left\{\begin{matrix}-10x-8y=-42\\9x-6y=51\end{matrix}\right.\qquad V=\{(5,-1)\}\)
- \(\left\{\begin{matrix}9x-4y=-114\\8x=-4y-56\end{matrix}\right.\qquad V=\{(-10,6)\}\)