Substitutie of combinatie
- \(\left\{\begin{matrix}-x+y=\frac{-37}{28}\\5x+5y=\frac{-585}{28}\end{matrix}\right.\)
- \(\left\{\begin{matrix}4x+6y=\frac{-495}{38}\\-x=-3y+\frac{-351}{76}\end{matrix}\right.\)
- \(\left\{\begin{matrix}-2x-2y=\frac{-8}{11}\\-x=-3y+\frac{40}{11}\end{matrix}\right.\)
- \(\left\{\begin{matrix}-3y=\frac{-58}{11}-4x\\3x+y=\frac{227}{33}\end{matrix}\right.\)
- \(\left\{\begin{matrix}3x-4y=\frac{-25}{38}\\-3x+y=\frac{43}{152}\end{matrix}\right.\)
- \(\left\{\begin{matrix}-5y=\frac{345}{14}+5x\\-3x+y=\frac{239}{14}\end{matrix}\right.\)
- \(\left\{\begin{matrix}2x+5y=\frac{181}{14}\\-3x-y=\frac{47}{14}\end{matrix}\right.\)
- \(\left\{\begin{matrix}-4x+5y=\frac{118}{7}\\-x+2y=\frac{43}{7}\end{matrix}\right.\)
- \(\left\{\begin{matrix}-4y=\frac{-127}{6}+x\\-4x+4y=\frac{26}{3}\end{matrix}\right.\)
- \(\left\{\begin{matrix}-x+4y=\frac{-53}{2}\\2x-5y=32\end{matrix}\right.\)
- \(\left\{\begin{matrix}-3x-2y=\frac{147}{34}\\-4x=y+\frac{344}{51}\end{matrix}\right.\)
- \(\left\{\begin{matrix}-3x-3y=\frac{558}{85}\\5x=-y+\frac{-386}{85}\end{matrix}\right.\)
Substitutie of combinatie
Verbetersleutel
- \(\left\{\begin{matrix}-x+y=\frac{-37}{28}\\5x+5y=\frac{-585}{28}\end{matrix}\right.\qquad V=\{(\frac{-10}{7},\frac{-11}{4})\}\)
- \(\left\{\begin{matrix}4x+6y=\frac{-495}{38}\\-x=-3y+\frac{-351}{76}\end{matrix}\right.\qquad V=\{(\frac{-12}{19},\frac{-7}{4})\}\)
- \(\left\{\begin{matrix}-2x-2y=\frac{-8}{11}\\-x=-3y+\frac{40}{11}\end{matrix}\right.\qquad V=\{(\frac{-7}{11},1)\}\)
- \(\left\{\begin{matrix}-3y=\frac{-58}{11}-4x\\3x+y=\frac{227}{33}\end{matrix}\right.\qquad V=\{(\frac{13}{11},\frac{10}{3})\}\)
- \(\left\{\begin{matrix}3x-4y=\frac{-25}{38}\\-3x+y=\frac{43}{152}\end{matrix}\right.\qquad V=\{(\frac{-1}{19},\frac{1}{8})\}\)
- \(\left\{\begin{matrix}-5y=\frac{345}{14}+5x\\-3x+y=\frac{239}{14}\end{matrix}\right.\qquad V=\{(\frac{-11}{2},\frac{4}{7})\}\)
- \(\left\{\begin{matrix}2x+5y=\frac{181}{14}\\-3x-y=\frac{47}{14}\end{matrix}\right.\qquad V=\{(\frac{-16}{7},\frac{7}{2})\}\)
- \(\left\{\begin{matrix}-4x+5y=\frac{118}{7}\\-x+2y=\frac{43}{7}\end{matrix}\right.\qquad V=\{(-1,\frac{18}{7})\}\)
- \(\left\{\begin{matrix}-4y=\frac{-127}{6}+x\\-4x+4y=\frac{26}{3}\end{matrix}\right.\qquad V=\{(\frac{5}{2},\frac{14}{3})\}\)
- \(\left\{\begin{matrix}-x+4y=\frac{-53}{2}\\2x-5y=32\end{matrix}\right.\qquad V=\{(\frac{-3}{2},-7)\}\)
- \(\left\{\begin{matrix}-3x-2y=\frac{147}{34}\\-4x=y+\frac{344}{51}\end{matrix}\right.\qquad V=\{(\frac{-11}{6},\frac{10}{17})\}\)
- \(\left\{\begin{matrix}-3x-3y=\frac{558}{85}\\5x=-y+\frac{-386}{85}\end{matrix}\right.\qquad V=\{(\frac{-10}{17},\frac{-8}{5})\}\)