Substitutie of combinatie
- \(\left\{\begin{matrix}-6y=2+3x\\-6x-y=\frac{79}{6}\end{matrix}\right.\)
- \(\left\{\begin{matrix}-x-2y=\frac{-191}{117}\\3x=-2y+\frac{443}{117}\end{matrix}\right.\)
- \(\left\{\begin{matrix}3y=\frac{321}{38}+3x\\3x-y=\frac{-297}{38}\end{matrix}\right.\)
- \(\left\{\begin{matrix}5x-2y=\frac{253}{105}\\-6x-y=\frac{-256}{105}\end{matrix}\right.\)
- \(\left\{\begin{matrix}-2x+6y=\frac{99}{38}\\6x-y=\frac{375}{76}\end{matrix}\right.\)
- \(\left\{\begin{matrix}-2x-6y=\frac{229}{13}\\-x=-y+\frac{149}{26}\end{matrix}\right.\)
- \(\left\{\begin{matrix}-6x-4y=\frac{-120}{11}\\-x=-y+\frac{-25}{11}\end{matrix}\right.\)
- \(\left\{\begin{matrix}2y=0-2x\\-x-4y=3\end{matrix}\right.\)
- \(\left\{\begin{matrix}4x+3y=\frac{461}{18}\\4x=y+\frac{-79}{18}\end{matrix}\right.\)
- \(\left\{\begin{matrix}-4x-3y=\frac{423}{17}\\5x-y=\frac{-505}{17}\end{matrix}\right.\)
- \(\left\{\begin{matrix}y=\frac{693}{304}+6x\\-3x-4y=\frac{279}{76}\end{matrix}\right.\)
- \(\left\{\begin{matrix}4x-2y=\frac{239}{52}\\3x+y=\frac{1}{104}\end{matrix}\right.\)
Substitutie of combinatie
Verbetersleutel
- \(\left\{\begin{matrix}-6y=2+3x\\-6x-y=\frac{79}{6}\end{matrix}\right.\qquad V=\{(\frac{-7}{3},\frac{5}{6})\}\)
- \(\left\{\begin{matrix}-x-2y=\frac{-191}{117}\\3x=-2y+\frac{443}{117}\end{matrix}\right.\qquad V=\{(\frac{14}{13},\frac{5}{18})\}\)
- \(\left\{\begin{matrix}3y=\frac{321}{38}+3x\\3x-y=\frac{-297}{38}\end{matrix}\right.\qquad V=\{(\frac{-5}{2},\frac{6}{19})\}\)
- \(\left\{\begin{matrix}5x-2y=\frac{253}{105}\\-6x-y=\frac{-256}{105}\end{matrix}\right.\qquad V=\{(\frac{3}{7},\frac{-2}{15})\}\)
- \(\left\{\begin{matrix}-2x+6y=\frac{99}{38}\\6x-y=\frac{375}{76}\end{matrix}\right.\qquad V=\{(\frac{18}{19},\frac{3}{4})\}\)
- \(\left\{\begin{matrix}-2x-6y=\frac{229}{13}\\-x=-y+\frac{149}{26}\end{matrix}\right.\qquad V=\{(\frac{-13}{2},\frac{-10}{13})\}\)
- \(\left\{\begin{matrix}-6x-4y=\frac{-120}{11}\\-x=-y+\frac{-25}{11}\end{matrix}\right.\qquad V=\{(2,\frac{-3}{11})\}\)
- \(\left\{\begin{matrix}2y=0-2x\\-x-4y=3\end{matrix}\right.\qquad V=\{(1,-1)\}\)
- \(\left\{\begin{matrix}4x+3y=\frac{461}{18}\\4x=y+\frac{-79}{18}\end{matrix}\right.\qquad V=\{(\frac{7}{9},\frac{15}{2})\}\)
- \(\left\{\begin{matrix}-4x-3y=\frac{423}{17}\\5x-y=\frac{-505}{17}\end{matrix}\right.\qquad V=\{(-6,\frac{-5}{17})\}\)
- \(\left\{\begin{matrix}y=\frac{693}{304}+6x\\-3x-4y=\frac{279}{76}\end{matrix}\right.\qquad V=\{(\frac{-9}{19},\frac{-9}{16})\}\)
- \(\left\{\begin{matrix}4x-2y=\frac{239}{52}\\3x+y=\frac{1}{104}\end{matrix}\right.\qquad V=\{(\frac{6}{13},\frac{-11}{8})\}\)