# Stelsels met breuken

#### Substitutie of combinatie

1. $$\left\{\begin{matrix}2x+4y=\frac{67}{2}\\-x=6y+\frac{-195}{4}\end{matrix}\right.$$
2. $$\left\{\begin{matrix}-3x+5y=\frac{137}{24}\\4x-y=\frac{13}{72}\end{matrix}\right.$$
3. $$\left\{\begin{matrix}-x+3y=\frac{-157}{20}\\5x=5y+\frac{151}{12}\end{matrix}\right.$$
4. $$\left\{\begin{matrix}2y=\frac{-823}{117}-5x\\-x+y=\frac{89}{117}\end{matrix}\right.$$
5. $$\left\{\begin{matrix}-3x+3y=\frac{-93}{76}\\-6x=-y+\frac{-63}{38}\end{matrix}\right.$$
6. $$\left\{\begin{matrix}-4x-6y=-8\\-3x-y=15\end{matrix}\right.$$
7. $$\left\{\begin{matrix}4x-6y=\frac{-1}{14}\\x=-5y+\frac{-27}{56}\end{matrix}\right.$$
8. $$\left\{\begin{matrix}-y=\frac{15}{2}-5x\\-2x+3y=\frac{-93}{5}\end{matrix}\right.$$
9. $$\left\{\begin{matrix}-2x-2y=\frac{-57}{5}\\x+5y=\frac{277}{10}\end{matrix}\right.$$
10. $$\left\{\begin{matrix}-x-3y=\frac{71}{16}\\-2x+5y=\frac{21}{16}\end{matrix}\right.$$
11. $$\left\{\begin{matrix}6x-5y=-13\\-x=-4y+\frac{17}{2}\end{matrix}\right.$$
12. $$\left\{\begin{matrix}-2x-5y=\frac{-118}{33}\\-6x-y=\frac{386}{165}\end{matrix}\right.$$

#### Substitutie of combinatie

##### Verbetersleutel

1. $$\left\{\begin{matrix}2x+4y=\frac{67}{2}\\-x=6y+\frac{-195}{4}\end{matrix}\right.\qquad V=\{(\frac{3}{4},8)\}$$
2. $$\left\{\begin{matrix}-3x+5y=\frac{137}{24}\\4x-y=\frac{13}{72}\end{matrix}\right.\qquad V=\{(\frac{7}{18},\frac{11}{8})\}$$
3. $$\left\{\begin{matrix}-x+3y=\frac{-157}{20}\\5x=5y+\frac{151}{12}\end{matrix}\right.\qquad V=\{(\frac{-3}{20},\frac{-8}{3})\}$$
4. $$\left\{\begin{matrix}2y=\frac{-823}{117}-5x\\-x+y=\frac{89}{117}\end{matrix}\right.\qquad V=\{(\frac{-11}{9},\frac{-6}{13})\}$$
5. $$\left\{\begin{matrix}-3x+3y=\frac{-93}{76}\\-6x=-y+\frac{-63}{38}\end{matrix}\right.\qquad V=\{(\frac{1}{4},\frac{-3}{19})\}$$
6. $$\left\{\begin{matrix}-4x-6y=-8\\-3x-y=15\end{matrix}\right.\qquad V=\{(-7,6)\}$$
7. $$\left\{\begin{matrix}4x-6y=\frac{-1}{14}\\x=-5y+\frac{-27}{56}\end{matrix}\right.\qquad V=\{(\frac{-1}{8},\frac{-1}{14})\}$$
8. $$\left\{\begin{matrix}-y=\frac{15}{2}-5x\\-2x+3y=\frac{-93}{5}\end{matrix}\right.\qquad V=\{(\frac{3}{10},-6)\}$$
9. $$\left\{\begin{matrix}-2x-2y=\frac{-57}{5}\\x+5y=\frac{277}{10}\end{matrix}\right.\qquad V=\{(\frac{1}{5},\frac{11}{2})\}$$
10. $$\left\{\begin{matrix}-x-3y=\frac{71}{16}\\-2x+5y=\frac{21}{16}\end{matrix}\right.\qquad V=\{(\frac{-19}{8},\frac{-11}{16})\}$$
11. $$\left\{\begin{matrix}6x-5y=-13\\-x=-4y+\frac{17}{2}\end{matrix}\right.\qquad V=\{(\frac{-1}{2},2)\}$$
12. $$\left\{\begin{matrix}-2x-5y=\frac{-118}{33}\\-6x-y=\frac{386}{165}\end{matrix}\right.\qquad V=\{(\frac{-6}{11},\frac{14}{15})\}$$
Oefeningengenerator vanhoeckes.be/wiskunde 2024-08-09 05:04:01