Ontbind in factoren door gebruik te maken van merkwaardige producten
- \(100a^{14}-169y^2\)
- \(x^2-25\)
- \(a^2-10a+25\)
- \(p^2+30p+225\)
- \(-4x^2+1\)
- \(25p^{8}+160p^4s+256s^2\)
- \(169b^2-4a^{8}\)
- \(64y^2-169q^{4}\)
- \(b^2-24b+144\)
- \(16b^{6}+120b^3+225\)
- \(36s^{8}+60s^4+25\)
- \(-16s^2+25\)
Ontbind in factoren door gebruik te maken van merkwaardige producten
Verbetersleutel
- \(100a^{14}-169y^2=(10a^7+13y)(10a^7-13y)\)
- \(x^2-25=(x-5)(x+5)\)
- \(a^2-10a+25=(a-5)^2\)
- \(p^2+30p+225=(p+15)^2\)
- \(-4x^2+1=(1-2x)(1+2x)\)
- \(25p^{8}+160p^4s+256s^2=(5p^4+16s)^2\)
- \(169b^2-4a^{8}=(13b-2a^4)(13b+2a^4)\)
- \(64y^2-169q^{4}=(8y-13q^2)(8y+13q^2)\)
- \(b^2-24b+144=(b-12)^2\)
- \(16b^{6}+120b^3+225=(4b^3+15)^2\)
- \(36s^{8}+60s^4+25=(6s^4+5)^2\)
- \(-16s^2+25=(5-4s)(5+4s)\)