Ontbinden in factoren (1)

Hoofdmenu Eentje per keer 

Ontbind in factoren door gebruik te maken van merkwaardige producten

  1. \(25a^{6}-140a^3q+196q^2\)
  2. \(225q^{4}+480q^2+256\)
  3. \(121q^{8}+88q^4+16\)
  4. \(169p^{4}+104p^2q+16q^2\)
  5. \(b^2-169\)
  6. \(144p^{4}-168p^2s+49s^2\)
  7. \(225y^2-256q^{16}\)
  8. \(q^2-81\)
  9. \(4p^2+36p+81\)
  10. \(81p^2+90p+25\)
  11. \(64x^{4}+80x^2+25\)
  12. \(s^2-16\)

Ontbind in factoren door gebruik te maken van merkwaardige producten

Verbetersleutel

  1. \(25a^{6}-140a^3q+196q^2=(5a^3-14q)^2\)
  2. \(225q^{4}+480q^2+256=(15q^2+16)^2\)
  3. \(121q^{8}+88q^4+16=(11q^4+4)^2\)
  4. \(169p^{4}+104p^2q+16q^2=(13p^2+4q)^2\)
  5. \(b^2-169=(b+13)(b-13)\)
  6. \(144p^{4}-168p^2s+49s^2=(12p^2-7s)^2\)
  7. \(225y^2-256q^{16}=(15y-16q^8)(15y+16q^8)\)
  8. \(q^2-81=(q+9)(q-9)\)
  9. \(4p^2+36p+81=(2p+9)^2\)
  10. \(81p^2+90p+25=(9p+5)^2\)
  11. \(64x^{4}+80x^2+25=(8x^2+5)^2\)
  12. \(s^2-16=(s+4)(s-4)\)
Oefeningengenerator vanhoeckes.be/wiskunde 2021-12-02 02:22:18