Zet om naar een positieve exponent
- \(\left(\frac{-2}{3}\right)^{-2}\)
- \(\left(\frac{-9}{5}\right)^{-3}\)
- \(\left(\frac{-17}{10}\right)^{-3}\)
- \(\left(\frac{-14}{5}\right)^{-2}\)
- \(-\left(\frac{-16}{3}\right)^{-3}\)
- \(\left(\frac{-6}{5}\right)^{-3}\)
- \(-\left(\frac{-9}{10}\right)^{-3}\)
- \(\left(\frac{-6}{7}\right)^{-4}\)
- \(-\left(\frac{-11}{6}\right)^{-4}\)
- \(-\left(\frac{-15}{4}\right)^{-1}\)
- \(\left(\frac{-12}{7}\right)^{-4}\)
- \(\left(\frac{-14}{5}\right)^{-3}\)
Zet om naar een positieve exponent
Verbetersleutel
- \(\left(\frac{-2}{3}\right)^{-2}=\left(-\frac{3}{2}\right)^{2}= \frac{3^{2}}{2^{2}}= \frac{9}{4}\)
- \(\left(\frac{-9}{5}\right)^{-3}=\left(-\frac{5}{9}\right)^{3}=- \frac{5^{3}}{9^{3}}=\ldots \text{ZRM}\)
- \(\left(\frac{-17}{10}\right)^{-3}=\left(-\frac{10}{17}\right)^{3}=- \frac{10^{3}}{17^{3}}=\ldots \text{ZRM}\)
- \(\left(\frac{-14}{5}\right)^{-2}=\left(-\frac{5}{14}\right)^{2}= \frac{5^{2}}{14^{2}}= \frac{25}{196}\)
- \(-\left(\frac{-16}{3}\right)^{-3}=-\left(-\frac{3}{16}\right)^{3}= \frac{3^{3}}{16^{3}}=\ldots \text{ZRM}\)
- \(\left(\frac{-6}{5}\right)^{-3}=\left(-\frac{5}{6}\right)^{3}=- \frac{5^{3}}{6^{3}}=\ldots \text{ZRM}\)
- \(-\left(\frac{-9}{10}\right)^{-3}=-\left(-\frac{10}{9}\right)^{3}= \frac{10^{3}}{9^{3}}=\ldots \text{ZRM}\)
- \(\left(\frac{-6}{7}\right)^{-4}=\left(-\frac{7}{6}\right)^{4}= \frac{7^{4}}{6^{4}}=\ldots \text{ZRM}\)
- \(-\left(\frac{-11}{6}\right)^{-4}=-\left(-\frac{6}{11}\right)^{4}=- \frac{6^{4}}{11^{4}}=\ldots \text{ZRM}\)
- \(-\left(\frac{-15}{4}\right)^{-1}=-\left(-\frac{4}{15}\right)^{1}= \frac{4^{1}}{15^{1}}= \frac{4}{15}\)
- \(\left(\frac{-12}{7}\right)^{-4}=\left(-\frac{7}{12}\right)^{4}= \frac{7^{4}}{12^{4}}=\ldots \text{ZRM}\)
- \(\left(\frac{-14}{5}\right)^{-3}=\left(-\frac{5}{14}\right)^{3}=- \frac{5^{3}}{14^{3}}=\ldots \text{ZRM}\)