Zet om naar een positieve exponent
- \(-\left(\frac{-13}{6}\right)^{-4}\)
- \(\left(\frac{-6}{7}\right)^{-2}\)
- \(\left(\frac{-3}{2}\right)^{-2}\)
- \(-\left(\frac{-11}{4}\right)^{-3}\)
- \(-\left(\frac{-10}{7}\right)^{-2}\)
- \(-\left(\frac{-12}{7}\right)^{-3}\)
- \(-\left(\frac{-19}{2}\right)^{-1}\)
- \(\left(\frac{-18}{7}\right)^{-4}\)
- \(\left(\frac{-19}{3}\right)^{-1}\)
- \(\left(\frac{-8}{5}\right)^{-2}\)
- \(-\left(\frac{-16}{5}\right)^{-2}\)
- \(\left(\frac{-10}{7}\right)^{-4}\)
Zet om naar een positieve exponent
Verbetersleutel
- \(-\left(\frac{-13}{6}\right)^{-4}=-\left(-\frac{6}{13}\right)^{4}=- \frac{6^{4}}{13^{4}}=\ldots \text{ZRM}\)
- \(\left(\frac{-6}{7}\right)^{-2}=\left(-\frac{7}{6}\right)^{2}= \frac{7^{2}}{6^{2}}= \frac{49}{36}\)
- \(\left(\frac{-3}{2}\right)^{-2}=\left(-\frac{2}{3}\right)^{2}= \frac{2^{2}}{3^{2}}= \frac{4}{9}\)
- \(-\left(\frac{-11}{4}\right)^{-3}=-\left(-\frac{4}{11}\right)^{3}= \frac{4^{3}}{11^{3}}=\ldots \text{ZRM}\)
- \(-\left(\frac{-10}{7}\right)^{-2}=-\left(-\frac{7}{10}\right)^{2}=- \frac{7^{2}}{10^{2}}=- \frac{49}{100}\)
- \(-\left(\frac{-12}{7}\right)^{-3}=-\left(-\frac{7}{12}\right)^{3}= \frac{7^{3}}{12^{3}}=\ldots \text{ZRM}\)
- \(-\left(\frac{-19}{2}\right)^{-1}=-\left(-\frac{2}{19}\right)^{1}= \frac{2^{1}}{19^{1}}= \frac{2}{19}\)
- \(\left(\frac{-18}{7}\right)^{-4}=\left(-\frac{7}{18}\right)^{4}= \frac{7^{4}}{18^{4}}=\ldots \text{ZRM}\)
- \(\left(\frac{-19}{3}\right)^{-1}=\left(-\frac{3}{19}\right)^{1}=- \frac{3^{1}}{19^{1}}=- \frac{3}{19}\)
- \(\left(\frac{-8}{5}\right)^{-2}=\left(-\frac{5}{8}\right)^{2}= \frac{5^{2}}{8^{2}}= \frac{25}{64}\)
- \(-\left(\frac{-16}{5}\right)^{-2}=-\left(-\frac{5}{16}\right)^{2}=- \frac{5^{2}}{16^{2}}=- \frac{25}{256}\)
- \(\left(\frac{-10}{7}\right)^{-4}=\left(-\frac{7}{10}\right)^{4}= \frac{7^{4}}{10^{4}}=\ldots \text{ZRM}\)