Zet om naar een positieve exponent
- \(\left(\frac{-15}{7}\right)^{-4}\)
- \(-\left(\frac{-9}{5}\right)^{-2}\)
- \(\left(\frac{-18}{5}\right)^{-3}\)
- \(-\left(\frac{-2}{7}\right)^{-1}\)
- \(-\left(\frac{-8}{3}\right)^{-1}\)
- \(-\left(\frac{-3}{10}\right)^{-4}\)
- \(-\left(\frac{-13}{3}\right)^{-3}\)
- \(\left(\frac{-13}{5}\right)^{-2}\)
- \(\left(\frac{-6}{5}\right)^{-3}\)
- \(-\left(\frac{-15}{2}\right)^{-1}\)
- \(\left(\frac{-14}{3}\right)^{-1}\)
- \(\left(\frac{-13}{6}\right)^{-4}\)
Zet om naar een positieve exponent
Verbetersleutel
- \(\left(\frac{-15}{7}\right)^{-4}=\left(-\frac{7}{15}\right)^{4}= \frac{7^{4}}{15^{4}}=\ldots \text{ZRM}\)
- \(-\left(\frac{-9}{5}\right)^{-2}=-\left(-\frac{5}{9}\right)^{2}=- \frac{5^{2}}{9^{2}}=- \frac{25}{81}\)
- \(\left(\frac{-18}{5}\right)^{-3}=\left(-\frac{5}{18}\right)^{3}=- \frac{5^{3}}{18^{3}}=\ldots \text{ZRM}\)
- \(-\left(\frac{-2}{7}\right)^{-1}=-\left(-\frac{7}{2}\right)^{1}= \frac{7^{1}}{2^{1}}= \frac{7}{2}\)
- \(-\left(\frac{-8}{3}\right)^{-1}=-\left(-\frac{3}{8}\right)^{1}= \frac{3^{1}}{8^{1}}= \frac{3}{8}\)
- \(-\left(\frac{-3}{10}\right)^{-4}=-\left(-\frac{10}{3}\right)^{4}=- \frac{10^{4}}{3^{4}}=\ldots \text{ZRM}\)
- \(-\left(\frac{-13}{3}\right)^{-3}=-\left(-\frac{3}{13}\right)^{3}= \frac{3^{3}}{13^{3}}=\ldots \text{ZRM}\)
- \(\left(\frac{-13}{5}\right)^{-2}=\left(-\frac{5}{13}\right)^{2}= \frac{5^{2}}{13^{2}}= \frac{25}{169}\)
- \(\left(\frac{-6}{5}\right)^{-3}=\left(-\frac{5}{6}\right)^{3}=- \frac{5^{3}}{6^{3}}=\ldots \text{ZRM}\)
- \(-\left(\frac{-15}{2}\right)^{-1}=-\left(-\frac{2}{15}\right)^{1}= \frac{2^{1}}{15^{1}}= \frac{2}{15}\)
- \(\left(\frac{-14}{3}\right)^{-1}=\left(-\frac{3}{14}\right)^{1}=- \frac{3^{1}}{14^{1}}=- \frac{3}{14}\)
- \(\left(\frac{-13}{6}\right)^{-4}=\left(-\frac{6}{13}\right)^{4}= \frac{6^{4}}{13^{4}}=\ldots \text{ZRM}\)