Zet om naar een positieve exponent
- \(\left(\frac{-6}{7}\right)^{-2}\)
- \(-\left(\frac{-12}{7}\right)^{-2}\)
- \(\left(\frac{-12}{7}\right)^{-4}\)
- \(-\left(\frac{-5}{3}\right)^{-1}\)
- \(-\left(\frac{-5}{6}\right)^{-1}\)
- \(\left(\frac{-17}{6}\right)^{-2}\)
- \(\left(\frac{-15}{8}\right)^{-4}\)
- \(-\left(\frac{-3}{7}\right)^{-3}\)
- \(-\left(\frac{-11}{7}\right)^{-3}\)
- \(-\left(\frac{-6}{7}\right)^{-4}\)
- \(\left(\frac{-5}{2}\right)^{-1}\)
- \(\left(\frac{-11}{3}\right)^{-3}\)
Zet om naar een positieve exponent
Verbetersleutel
- \(\left(\frac{-6}{7}\right)^{-2}=\left(-\frac{7}{6}\right)^{2}= \frac{7^{2}}{6^{2}}= \frac{49}{36}\)
- \(-\left(\frac{-12}{7}\right)^{-2}=-\left(-\frac{7}{12}\right)^{2}=- \frac{7^{2}}{12^{2}}=- \frac{49}{144}\)
- \(\left(\frac{-12}{7}\right)^{-4}=\left(-\frac{7}{12}\right)^{4}= \frac{7^{4}}{12^{4}}=\ldots \text{ZRM}\)
- \(-\left(\frac{-5}{3}\right)^{-1}=-\left(-\frac{3}{5}\right)^{1}= \frac{3^{1}}{5^{1}}= \frac{3}{5}\)
- \(-\left(\frac{-5}{6}\right)^{-1}=-\left(-\frac{6}{5}\right)^{1}= \frac{6^{1}}{5^{1}}= \frac{6}{5}\)
- \(\left(\frac{-17}{6}\right)^{-2}=\left(-\frac{6}{17}\right)^{2}= \frac{6^{2}}{17^{2}}= \frac{36}{289}\)
- \(\left(\frac{-15}{8}\right)^{-4}=\left(-\frac{8}{15}\right)^{4}= \frac{8^{4}}{15^{4}}=\ldots \text{ZRM}\)
- \(-\left(\frac{-3}{7}\right)^{-3}=-\left(-\frac{7}{3}\right)^{3}= \frac{7^{3}}{3^{3}}=\ldots \text{ZRM}\)
- \(-\left(\frac{-11}{7}\right)^{-3}=-\left(-\frac{7}{11}\right)^{3}= \frac{7^{3}}{11^{3}}=\ldots \text{ZRM}\)
- \(-\left(\frac{-6}{7}\right)^{-4}=-\left(-\frac{7}{6}\right)^{4}=- \frac{7^{4}}{6^{4}}=\ldots \text{ZRM}\)
- \(\left(\frac{-5}{2}\right)^{-1}=\left(-\frac{2}{5}\right)^{1}=- \frac{2^{1}}{5^{1}}=- \frac{2}{5}\)
- \(\left(\frac{-11}{3}\right)^{-3}=\left(-\frac{3}{11}\right)^{3}=- \frac{3^{3}}{11^{3}}=\ldots \text{ZRM}\)