Zet om naar een positieve exponent
- \(-\left(\frac{-19}{9}\right)^{-2}\)
- \(\left(\frac{-5}{4}\right)^{-4}\)
- \(-\left(\frac{-14}{5}\right)^{-1}\)
- \(-\left(\frac{-7}{4}\right)^{-2}\)
- \(\left(\frac{-9}{5}\right)^{-3}\)
- \(-\left(\frac{-2}{5}\right)^{-2}\)
- \(-\left(\frac{-17}{2}\right)^{-1}\)
- \(-\left(\frac{-11}{6}\right)^{-1}\)
- \(\left(\frac{-12}{7}\right)^{-4}\)
- \(-\left(\frac{-2}{5}\right)^{-1}\)
- \(\left(\frac{-16}{3}\right)^{-2}\)
- \(-\left(\frac{-6}{5}\right)^{-2}\)
Zet om naar een positieve exponent
Verbetersleutel
- \(-\left(\frac{-19}{9}\right)^{-2}=-\left(-\frac{9}{19}\right)^{2}=- \frac{9^{2}}{19^{2}}=- \frac{81}{361}\)
- \(\left(\frac{-5}{4}\right)^{-4}=\left(-\frac{4}{5}\right)^{4}= \frac{4^{4}}{5^{4}}=\ldots \text{ZRM}\)
- \(-\left(\frac{-14}{5}\right)^{-1}=-\left(-\frac{5}{14}\right)^{1}= \frac{5^{1}}{14^{1}}= \frac{5}{14}\)
- \(-\left(\frac{-7}{4}\right)^{-2}=-\left(-\frac{4}{7}\right)^{2}=- \frac{4^{2}}{7^{2}}=- \frac{16}{49}\)
- \(\left(\frac{-9}{5}\right)^{-3}=\left(-\frac{5}{9}\right)^{3}=- \frac{5^{3}}{9^{3}}=\ldots \text{ZRM}\)
- \(-\left(\frac{-2}{5}\right)^{-2}=-\left(-\frac{5}{2}\right)^{2}=- \frac{5^{2}}{2^{2}}=- \frac{25}{4}\)
- \(-\left(\frac{-17}{2}\right)^{-1}=-\left(-\frac{2}{17}\right)^{1}= \frac{2^{1}}{17^{1}}= \frac{2}{17}\)
- \(-\left(\frac{-11}{6}\right)^{-1}=-\left(-\frac{6}{11}\right)^{1}= \frac{6^{1}}{11^{1}}= \frac{6}{11}\)
- \(\left(\frac{-12}{7}\right)^{-4}=\left(-\frac{7}{12}\right)^{4}= \frac{7^{4}}{12^{4}}=\ldots \text{ZRM}\)
- \(-\left(\frac{-2}{5}\right)^{-1}=-\left(-\frac{5}{2}\right)^{1}= \frac{5^{1}}{2^{1}}= \frac{5}{2}\)
- \(\left(\frac{-16}{3}\right)^{-2}=\left(-\frac{3}{16}\right)^{2}= \frac{3^{2}}{16^{2}}= \frac{9}{256}\)
- \(-\left(\frac{-6}{5}\right)^{-2}=-\left(-\frac{5}{6}\right)^{2}=- \frac{5^{2}}{6^{2}}=- \frac{25}{36}\)