Zet om naar een positieve exponent
- \(\left(\frac{-12}{5}\right)^{-4}\)
- \(\left(\frac{-18}{7}\right)^{-2}\)
- \(-\left(\frac{-6}{7}\right)^{-3}\)
- \(\left(\frac{-14}{5}\right)^{-3}\)
- \(\left(\frac{-16}{3}\right)^{-2}\)
- \(\left(\frac{-19}{2}\right)^{-2}\)
- \(-\left(\frac{-17}{7}\right)^{-4}\)
- \(-\left(\frac{-3}{10}\right)^{-2}\)
- \(-\left(\frac{-9}{4}\right)^{-3}\)
- \(\left(\frac{-4}{3}\right)^{-1}\)
- \(-\left(\frac{-11}{10}\right)^{-1}\)
- \(-\left(\frac{-17}{9}\right)^{-4}\)
Zet om naar een positieve exponent
Verbetersleutel
- \(\left(\frac{-12}{5}\right)^{-4}=\left(-\frac{5}{12}\right)^{4}= \frac{5^{4}}{12^{4}}=\ldots \text{ZRM}\)
- \(\left(\frac{-18}{7}\right)^{-2}=\left(-\frac{7}{18}\right)^{2}= \frac{7^{2}}{18^{2}}= \frac{49}{324}\)
- \(-\left(\frac{-6}{7}\right)^{-3}=-\left(-\frac{7}{6}\right)^{3}= \frac{7^{3}}{6^{3}}=\ldots \text{ZRM}\)
- \(\left(\frac{-14}{5}\right)^{-3}=\left(-\frac{5}{14}\right)^{3}=- \frac{5^{3}}{14^{3}}=\ldots \text{ZRM}\)
- \(\left(\frac{-16}{3}\right)^{-2}=\left(-\frac{3}{16}\right)^{2}= \frac{3^{2}}{16^{2}}= \frac{9}{256}\)
- \(\left(\frac{-19}{2}\right)^{-2}=\left(-\frac{2}{19}\right)^{2}= \frac{2^{2}}{19^{2}}= \frac{4}{361}\)
- \(-\left(\frac{-17}{7}\right)^{-4}=-\left(-\frac{7}{17}\right)^{4}=- \frac{7^{4}}{17^{4}}=\ldots \text{ZRM}\)
- \(-\left(\frac{-3}{10}\right)^{-2}=-\left(-\frac{10}{3}\right)^{2}=- \frac{10^{2}}{3^{2}}=- \frac{100}{9}\)
- \(-\left(\frac{-9}{4}\right)^{-3}=-\left(-\frac{4}{9}\right)^{3}= \frac{4^{3}}{9^{3}}=\ldots \text{ZRM}\)
- \(\left(\frac{-4}{3}\right)^{-1}=\left(-\frac{3}{4}\right)^{1}=- \frac{3^{1}}{4^{1}}=- \frac{3}{4}\)
- \(-\left(\frac{-11}{10}\right)^{-1}=-\left(-\frac{10}{11}\right)^{1}= \frac{10^{1}}{11^{1}}= \frac{10}{11}\)
- \(-\left(\frac{-17}{9}\right)^{-4}=-\left(-\frac{9}{17}\right)^{4}=- \frac{9^{4}}{17^{4}}=\ldots \text{ZRM}\)