Negatieve exponent (reeks 2)

Hoofdmenu Eentje per keer 

Zet om naar een positieve exponent

  1. \(-\left(\frac{-19}{9}\right)^{-2}\)
  2. \(\left(\frac{-5}{4}\right)^{-4}\)
  3. \(-\left(\frac{-14}{5}\right)^{-1}\)
  4. \(-\left(\frac{-7}{4}\right)^{-2}\)
  5. \(\left(\frac{-9}{5}\right)^{-3}\)
  6. \(-\left(\frac{-2}{5}\right)^{-2}\)
  7. \(-\left(\frac{-17}{2}\right)^{-1}\)
  8. \(-\left(\frac{-11}{6}\right)^{-1}\)
  9. \(\left(\frac{-12}{7}\right)^{-4}\)
  10. \(-\left(\frac{-2}{5}\right)^{-1}\)
  11. \(\left(\frac{-16}{3}\right)^{-2}\)
  12. \(-\left(\frac{-6}{5}\right)^{-2}\)

Zet om naar een positieve exponent

Verbetersleutel

  1. \(-\left(\frac{-19}{9}\right)^{-2}=-\left(-\frac{9}{19}\right)^{2}=- \frac{9^{2}}{19^{2}}=- \frac{81}{361}\)
  2. \(\left(\frac{-5}{4}\right)^{-4}=\left(-\frac{4}{5}\right)^{4}= \frac{4^{4}}{5^{4}}=\ldots \text{ZRM}\)
  3. \(-\left(\frac{-14}{5}\right)^{-1}=-\left(-\frac{5}{14}\right)^{1}= \frac{5^{1}}{14^{1}}= \frac{5}{14}\)
  4. \(-\left(\frac{-7}{4}\right)^{-2}=-\left(-\frac{4}{7}\right)^{2}=- \frac{4^{2}}{7^{2}}=- \frac{16}{49}\)
  5. \(\left(\frac{-9}{5}\right)^{-3}=\left(-\frac{5}{9}\right)^{3}=- \frac{5^{3}}{9^{3}}=\ldots \text{ZRM}\)
  6. \(-\left(\frac{-2}{5}\right)^{-2}=-\left(-\frac{5}{2}\right)^{2}=- \frac{5^{2}}{2^{2}}=- \frac{25}{4}\)
  7. \(-\left(\frac{-17}{2}\right)^{-1}=-\left(-\frac{2}{17}\right)^{1}= \frac{2^{1}}{17^{1}}= \frac{2}{17}\)
  8. \(-\left(\frac{-11}{6}\right)^{-1}=-\left(-\frac{6}{11}\right)^{1}= \frac{6^{1}}{11^{1}}= \frac{6}{11}\)
  9. \(\left(\frac{-12}{7}\right)^{-4}=\left(-\frac{7}{12}\right)^{4}= \frac{7^{4}}{12^{4}}=\ldots \text{ZRM}\)
  10. \(-\left(\frac{-2}{5}\right)^{-1}=-\left(-\frac{5}{2}\right)^{1}= \frac{5^{1}}{2^{1}}= \frac{5}{2}\)
  11. \(\left(\frac{-16}{3}\right)^{-2}=\left(-\frac{3}{16}\right)^{2}= \frac{3^{2}}{16^{2}}= \frac{9}{256}\)
  12. \(-\left(\frac{-6}{5}\right)^{-2}=-\left(-\frac{5}{6}\right)^{2}=- \frac{5^{2}}{6^{2}}=- \frac{25}{36}\)
Oefeningengenerator vanhoeckes.be/wiskunde 2024-11-21 10:04:27