Bepaal x
- \(\log x = \frac{7}{5}\)
- \(\log x = \frac{7}{3}\)
- \(\log x = \frac{-2}{9}\)
- \(\log x = 6\)
- \(\log x = -9\)
- \(\log x = 3\)
- \(\log x = 2\)
- \(\log x = -2\)
- \(\log x = -7\)
- \(\log x = \frac{3}{2}\)
- \(\log x = \frac{-2}{3}\)
- \(\log x = \frac{-11}{2}\)
Bepaal x
Verbetersleutel
- \(\log x = \frac{7}{5}\\ \Leftrightarrow x =\log 10^{\frac{7}{5}}\\ \Leftrightarrow x =\sqrt[5]{ 10^{7} }\)
- \(\log x = \frac{7}{3}\\ \Leftrightarrow x =\log 10^{\frac{7}{3}}\\ \Leftrightarrow x =\sqrt[3]{ 10^{7} }\)
- \(\log x = \frac{-2}{9}\\ \Leftrightarrow x =\log 10^{\frac{-2}{9}}\\ \Leftrightarrow x =\sqrt[9]{ \frac{1}{10^{2}} }\)
- \(\log x = 6\\ \Leftrightarrow x = 10^{6} \\ \Leftrightarrow x =1000000\)
- \(\log x = -9\\ \Leftrightarrow x = \log 10^{-9} \\ \Leftrightarrow x = \frac{1}{10^{9}}\)
- \(\log x = 3\\ \Leftrightarrow x = 10^{3} \\ \Leftrightarrow x =1000\)
- \(\log x = 2\\ \Leftrightarrow x = 10^{2} \\ \Leftrightarrow x =100\)
- \(\log x = -2\\ \Leftrightarrow x = 10^{-2} \\ \Leftrightarrow x =0,01\)
- \(\log x = -7\\ \Leftrightarrow x = \log 10^{-7} \\ \Leftrightarrow x = \frac{1}{10^{7}}\)
- \(\log x = \frac{3}{2}\\ \Leftrightarrow x =\log 10^{\frac{3}{2}}\\ \Leftrightarrow x = \sqrt{ 10^{3} } \)
- \(\log x = \frac{-2}{3}\\ \Leftrightarrow x =\log 10^{\frac{-2}{3}}\\ \Leftrightarrow x =\sqrt[3]{ \frac{1}{10^{2}} }\)
- \(\log x = \frac{-11}{2}\\ \Leftrightarrow x =\log 10^{\frac{-11}{2}}\\ \Leftrightarrow x = \sqrt{ \frac{1}{10^{11}} } \)