Bepaal x
- \(\log x = \frac{-12}{11}\)
- \(\log x = 2\)
- \(\log x = -6\)
- \(\log x = 0\)
- \(\log x = 9\)
- \(\log x = \frac{3}{2}\)
- \(\log x = 4\)
- \(\log x = \frac{-7}{3}\)
- \(\log x = -4\)
- \(\log x = \frac{-8}{7}\)
- \(\log x = 8\)
- \(\log x = -7\)
Bepaal x
Verbetersleutel
- \(\log x = \frac{-12}{11}\\ \Leftrightarrow x =\log 10^{\frac{-12}{11}}\\ \Leftrightarrow x =\sqrt[11]{ \frac{1}{10^{12}} }\)
- \(\log x = 2\\ \Leftrightarrow x = 10^{2} \\ \Leftrightarrow x =100\)
- \(\log x = -6\\ \Leftrightarrow x = \log 10^{-6} \\ \Leftrightarrow x = \frac{1}{10^{6}}\)
- \(\log x = 0\\ \Leftrightarrow x = 10^{0} \\ \Leftrightarrow x =1\)
- \(\log x = 9\\ \Leftrightarrow x = 10^{9} \\ \Leftrightarrow x =1000000000\)
- \(\log x = \frac{3}{2}\\ \Leftrightarrow x =\log 10^{\frac{3}{2}}\\ \Leftrightarrow x = \sqrt{ 10^{3} } \)
- \(\log x = 4\\ \Leftrightarrow x = 10^{4} \\ \Leftrightarrow x =10000\)
- \(\log x = \frac{-7}{3}\\ \Leftrightarrow x =\log 10^{\frac{-7}{3}}\\ \Leftrightarrow x =\sqrt[3]{ \frac{1}{10^{7}} }\)
- \(\log x = -4\\ \Leftrightarrow x = \log 10^{-4} \\ \Leftrightarrow x = \frac{1}{10^{4}}\)
- \(\log x = \frac{-8}{7}\\ \Leftrightarrow x =\log 10^{\frac{-8}{7}}\\ \Leftrightarrow x =\sqrt[7]{ \frac{1}{10^{8}} }\)
- \(\log x = 8\\ \Leftrightarrow x = 10^{8} \\ \Leftrightarrow x =100000000\)
- \(\log x = -7\\ \Leftrightarrow x = \log 10^{-7} \\ \Leftrightarrow x = \frac{1}{10^{7}}\)