Rekenen met log10 (reeks 2)

Hoofdmenu Eentje per keer 

Bepaal x

  1. \(\log x = \frac{1}{11}\)
  2. \(\log x = \frac{12}{11}\)
  3. \(\log x = \frac{1}{6}\)
  4. \(\log x = \frac{9}{7}\)
  5. \(\log x = -6\)
  6. \(\log x = 8\)
  7. \(\log x = -3\)
  8. \(\log x = \frac{8}{9}\)
  9. \(\log x = 5\)
  10. \(\log x = -2\)
  11. \(\log x = -4\)
  12. \(\log x = -9\)

Bepaal x

Verbetersleutel

  1. \(\log x = \frac{1}{11}\\ \Leftrightarrow x =\log 10^{\frac{1}{11}}\\ \Leftrightarrow x =\sqrt[11]{ 10 }\)
  2. \(\log x = \frac{12}{11}\\ \Leftrightarrow x =\log 10^{\frac{12}{11}}\\ \Leftrightarrow x =\sqrt[11]{ 10^{12} }\)
  3. \(\log x = \frac{1}{6}\\ \Leftrightarrow x =\log 10^{\frac{1}{6}}\\ \Leftrightarrow x =\sqrt[6]{ 10 }\)
  4. \(\log x = \frac{9}{7}\\ \Leftrightarrow x =\log 10^{\frac{9}{7}}\\ \Leftrightarrow x =\sqrt[7]{ 10^{9} }\)
  5. \(\log x = -6\\ \Leftrightarrow x = \log 10^{-6} \\ \Leftrightarrow x = \frac{1}{10^{6}}\)
  6. \(\log x = 8\\ \Leftrightarrow x = 10^{8} \\ \Leftrightarrow x =100000000\)
  7. \(\log x = -3\\ \Leftrightarrow x = \log 10^{-3} \\ \Leftrightarrow x = \frac{1}{10^{3}}\)
  8. \(\log x = \frac{8}{9}\\ \Leftrightarrow x =\log 10^{\frac{8}{9}}\\ \Leftrightarrow x =\sqrt[9]{ 10^{8} }\)
  9. \(\log x = 5\\ \Leftrightarrow x = 10^{5} \\ \Leftrightarrow x =100000\)
  10. \(\log x = -2\\ \Leftrightarrow x = 10^{-2} \\ \Leftrightarrow x =0,01\)
  11. \(\log x = -4\\ \Leftrightarrow x = \log 10^{-4} \\ \Leftrightarrow x = \frac{1}{10^{4}}\)
  12. \(\log x = -9\\ \Leftrightarrow x = \log 10^{-9} \\ \Leftrightarrow x = \frac{1}{10^{9}}\)
Oefeningengenerator vanhoeckes.be/wiskunde 2023-06-07 18:38:30