Bepaal x
- \(\log x = \frac{1}{11}\)
- \(\log x = \frac{12}{11}\)
- \(\log x = \frac{1}{6}\)
- \(\log x = \frac{9}{7}\)
- \(\log x = -6\)
- \(\log x = 8\)
- \(\log x = -3\)
- \(\log x = \frac{8}{9}\)
- \(\log x = 5\)
- \(\log x = -2\)
- \(\log x = -4\)
- \(\log x = -9\)
Bepaal x
Verbetersleutel
- \(\log x = \frac{1}{11}\\ \Leftrightarrow x =\log 10^{\frac{1}{11}}\\ \Leftrightarrow x =\sqrt[11]{ 10 }\)
- \(\log x = \frac{12}{11}\\ \Leftrightarrow x =\log 10^{\frac{12}{11}}\\ \Leftrightarrow x =\sqrt[11]{ 10^{12} }\)
- \(\log x = \frac{1}{6}\\ \Leftrightarrow x =\log 10^{\frac{1}{6}}\\ \Leftrightarrow x =\sqrt[6]{ 10 }\)
- \(\log x = \frac{9}{7}\\ \Leftrightarrow x =\log 10^{\frac{9}{7}}\\ \Leftrightarrow x =\sqrt[7]{ 10^{9} }\)
- \(\log x = -6\\ \Leftrightarrow x = \log 10^{-6} \\ \Leftrightarrow x = \frac{1}{10^{6}}\)
- \(\log x = 8\\ \Leftrightarrow x = 10^{8} \\ \Leftrightarrow x =100000000\)
- \(\log x = -3\\ \Leftrightarrow x = \log 10^{-3} \\ \Leftrightarrow x = \frac{1}{10^{3}}\)
- \(\log x = \frac{8}{9}\\ \Leftrightarrow x =\log 10^{\frac{8}{9}}\\ \Leftrightarrow x =\sqrt[9]{ 10^{8} }\)
- \(\log x = 5\\ \Leftrightarrow x = 10^{5} \\ \Leftrightarrow x =100000\)
- \(\log x = -2\\ \Leftrightarrow x = 10^{-2} \\ \Leftrightarrow x =0,01\)
- \(\log x = -4\\ \Leftrightarrow x = \log 10^{-4} \\ \Leftrightarrow x = \frac{1}{10^{4}}\)
- \(\log x = -9\\ \Leftrightarrow x = \log 10^{-9} \\ \Leftrightarrow x = \frac{1}{10^{9}}\)