Rekenen met log10 (reeks 1)

Hoofdmenu Eentje per keer 

Bereken

  1. \(\log \frac{1}{10^{7}}\)
  2. \(\log 0,01\)
  3. \(\log 1000\)
  4. \(\log \sqrt[3]{ 10 }\)
  5. \(\log \sqrt[5]{ \left(\frac{1}{10}\right)^{2} }\)
  6. \(\log \sqrt[3]{ \frac{1}{10^{2}} }\)
  7. \(\log 0,001\)
  8. \(\log 1000000000\)
  9. \(\log \sqrt[3]{ 10^{8} }\)
  10. \(\log \frac{1}{10^{8}}\)
  11. \(\log \sqrt[6]{ 10 }\)
  12. \(\log \sqrt[10]{ 10^{3} }\)

Bereken

Verbetersleutel

  1. \(\log \frac{1}{10^{7}}= \log 10^{-7}=-7\)
  2. \(\log 0,01= \log 10^{-2}=-2\)
  3. \(\log 1000= \log 10^{3}=3\)
  4. \(\log \sqrt[3]{ 10 }=\log 10^{\frac{1}{3}}=\frac{1}{3}\)
  5. \(\log \sqrt[5]{ \left(\frac{1}{10}\right)^{2} }=\log 10^{\frac{-2}{5}}=\frac{-2}{5}\)
  6. \(\log \sqrt[3]{ \frac{1}{10^{2}} }=\log 10^{\frac{-2}{3}}=\frac{-2}{3}\)
  7. \(\log 0,001= \log 10^{-3}=-3\)
  8. \(\log 1000000000= \log 10^{9}=9\)
  9. \(\log \sqrt[3]{ 10^{8} }=\log 10^{\frac{8}{3}}=\frac{8}{3}\)
  10. \(\log \frac{1}{10^{8}}= \log 10^{-8}=-8\)
  11. \(\log \sqrt[6]{ 10 }=\log 10^{\frac{1}{6}}=\frac{1}{6}\)
  12. \(\log \sqrt[10]{ 10^{3} }=\log 10^{\frac{3}{10}}=\frac{3}{10}\)
Oefeningengenerator vanhoeckes.be/wiskunde 2025-04-02 04:36:15