Bereken
- \(\log \frac{1}{10^{9}}\)
- \(\log \frac{1}{10^{1}}\)
- \(\log \sqrt[3]{ \left(\frac{1}{10}\right)^{4} }\)
- \(\log 0,01\)
- \(\log \sqrt[5]{ \left(\frac{1}{10}\right)^{3} }\)
- \(\log 1000000\)
- \(\log \frac{1}{10^{4}}\)
- \(\log \frac{1}{10^{6}}\)
- \(\log 1000000000\)
- \(\log \sqrt[5]{ 10^{8} }\)
- \(\log \sqrt[4]{ \frac{1}{10^{3}} }\)
- \(\log \sqrt[4]{ 10 }\)
Bereken
Verbetersleutel
- \(\log \frac{1}{10^{9}}= \log 10^{-9}=-9\)
- \(\log \frac{1}{10^{1}}= \log 10^{-1}=-1\)
- \(\log \sqrt[3]{ \left(\frac{1}{10}\right)^{4} }=\log 10^{\frac{-4}{3}}=\frac{-4}{3}\)
- \(\log 0,01= \log 10^{-2}=-2\)
- \(\log \sqrt[5]{ \left(\frac{1}{10}\right)^{3} }=\log 10^{\frac{-3}{5}}=\frac{-3}{5}\)
- \(\log 1000000= \log 10^{6}=6\)
- \(\log \frac{1}{10^{4}}= \log 10^{-4}=-4\)
- \(\log \frac{1}{10^{6}}= \log 10^{-6}=-6\)
- \(\log 1000000000= \log 10^{9}=9\)
- \(\log \sqrt[5]{ 10^{8} }=\log 10^{\frac{8}{5}}=\frac{8}{5}\)
- \(\log \sqrt[4]{ \frac{1}{10^{3}} }=\log 10^{\frac{-3}{4}}=\frac{-3}{4}\)
- \(\log \sqrt[4]{ 10 }=\log 10^{\frac{1}{4}}=\frac{1}{4}\)