Bereken
- \(\log \frac{1}{10^{7}}\)
- \(\log 0,01\)
- \(\log 1000\)
- \(\log \sqrt[3]{ 10 }\)
- \(\log \sqrt[5]{ \left(\frac{1}{10}\right)^{2} }\)
- \(\log \sqrt[3]{ \frac{1}{10^{2}} }\)
- \(\log 0,001\)
- \(\log 1000000000\)
- \(\log \sqrt[3]{ 10^{8} }\)
- \(\log \frac{1}{10^{8}}\)
- \(\log \sqrt[6]{ 10 }\)
- \(\log \sqrt[10]{ 10^{3} }\)
Bereken
Verbetersleutel
- \(\log \frac{1}{10^{7}}= \log 10^{-7}=-7\)
- \(\log 0,01= \log 10^{-2}=-2\)
- \(\log 1000= \log 10^{3}=3\)
- \(\log \sqrt[3]{ 10 }=\log 10^{\frac{1}{3}}=\frac{1}{3}\)
- \(\log \sqrt[5]{ \left(\frac{1}{10}\right)^{2} }=\log 10^{\frac{-2}{5}}=\frac{-2}{5}\)
- \(\log \sqrt[3]{ \frac{1}{10^{2}} }=\log 10^{\frac{-2}{3}}=\frac{-2}{3}\)
- \(\log 0,001= \log 10^{-3}=-3\)
- \(\log 1000000000= \log 10^{9}=9\)
- \(\log \sqrt[3]{ 10^{8} }=\log 10^{\frac{8}{3}}=\frac{8}{3}\)
- \(\log \frac{1}{10^{8}}= \log 10^{-8}=-8\)
- \(\log \sqrt[6]{ 10 }=\log 10^{\frac{1}{6}}=\frac{1}{6}\)
- \(\log \sqrt[10]{ 10^{3} }=\log 10^{\frac{3}{10}}=\frac{3}{10}\)